• Title/Summary/Keyword: Upland Soil

Search Result 785, Processing Time 0.027 seconds

Interspecific Differences of the Capacities on Excessive Soil Moisture Stress for Upland Crops in Converted Paddy Field

  • Jung, Ki-Yuol;Choi, Young-Dae;Chun, Hyen-Chung;Lee, Sanghun;Kang, Hang-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.2
    • /
    • pp.157-167
    • /
    • 2016
  • The interspecific estimation for tolerance capacities of upland crop species to excessive soil water stress in paddy field is significant in agricultural practices. Most of upland crops can be damaged by either excessive soil water or capillary rise of the water table during rainy season in paddy fields. The major objective of this study was to evaluate water stress of upland crops under different drainage classes in converted paddy field. This experiment was carried out in poorly drained soil (PDS) and imperfectly drained soil (IDS) of alluvial sloping area located at Toero-ri, Bubuk-myeon, Miryang-si, Gyeongsangnam-do. The soil was Gagog series, which was a member of the fine silty, mixed, nonacid, mesic family of Aeric Endoaquepts (Low Humic-Gley soils). Two drainage methods, namely under Open ditch drainage methods (ODM) and, Closed pipe drainage methods (PDM) were installed within 1-m position at the lower edge of the upper paddy fields. The results showed that sum of excess water days ($SWD_{30}$), which was used to represent the moisture stress index, was 42 days (the lowest) in the PDM compared with 110 days in the ODM. Most of upland crops were more susceptible to excessive soil water during panicle initial stage on more PDS than on IDS. Yield of upland crops in the PDM was continuously increased by the rate of 15.1% on sorghum, 15.4% foxtail millet, 53.6% proso millet, 49.6% soybean and 47.9% adzuki bean as compared in the ODM. The capacity for tolerance by excessive soil water based on yield of each upland crop in the poorly drained sloping paddy fields was the order of sorghum, soybean, foxtail millet, proso millet and adzuki bean. Therefore, Sorghum is relatively tolerant to excessive soil water conditions and, may be grown successfully in converted paddy field.

Revised Soil Survey of Yangju City in Gyunggido

  • Hyun, Byung-Keun;Sonn, Yeon-Kyu;Kim, Keun-Tae;Cho, Hyun-Jun;Jung, Sug-Jae;Choi, Jung-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.2
    • /
    • pp.81-92
    • /
    • 2017
  • Recently, agricultural lands have decreased sharply, which was caused by huge housing site, urbanization, land consolidation, and road construction etc. In particular, Yangju city near Seoul city has the most severe land use change in Korea. Therefore, we analyzed changes of land use, soil properties, and soil information in order to provide the basic soil information and soil management practices in this city. The area of crop cultivated land in Korea (2015) reduced by 12,090 ha compared to ones from the previous year (2014). The paddy field decreased by 25,421 ha but, upland field increased by 13,331 ha. One of the reasons for the reduction of the paddy field was converting paddy field to upland (20,916 ha) > others (3,056) > building (2,571) > public facilities (847) > idle land (217). But, reasons for increase of upland field were switching paddy to upland (20,916 ha) > land developed (634). The main reason of converting paddy field to upland was changing from rice to more profitable speciality crops or pulses. The cropland area (paddy fields, upland, orchard) of Yangju city reduced by 1,412 ha (2015/2014). The ratio of cropland area in each city reduced by 22.9% dramatically compared 2015 to 1999. The paddy fields located in alluvial plains in Yangju city were changed into upland or green house. The drainage classes of soil have been deteriorated because the flows of water were intercepted by road construction and other disturbance to water flows. In particular, paddy fields have been changed to not only upland, orchard, greenhouse cultivation but also to fallow and soil dressing on paddy in Yangju city. To analyze result of soil survey of Yangju city, 858 soil codes (soil phases) were used and the area was 105.17ha. The number of soil series increased from 60 to 65, and that of soil phase increased from 105 to 124. The largest increased area was Noegog soil series. 125.7ha of Neogog soil series was incorporated from the existing Sachon, Yecheon and Eungog soil series. The soil suitability class of paddy field in Ogjung huge housing site of Yangju city was the 4th grade for 32.6% of the area. The soil suitability classes of upland were 2nd and 3rd grade for 72.4% of the area. Farm land with high quality should be conserved by related law.

Characterization of Phosphate-solubilizing Microorganisms in Upland and Plastic Film House Soils (밭과 시설재배지 토양의 인산가용화 미생물의 특성)

  • Suh, Jang-Sun;Kwon, Jang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.5
    • /
    • pp.348-353
    • /
    • 2008
  • With the aim to explore the possible role of phosphate-solubilizing bacteria in soil, we conducted a survey of phosphate-solubilizing microorganisms colonizing in upland and plastic film house soils. Soil EC, pH, organic matter, available phosphate, exchangeable cation such as potassium, calcium and magnesium, and total P of plastic film house soils were higher than those of upland soils. Phosphate-solubilizing bacteria population was higher in plastic film house soils than upland soils, but species of phosphate-solubilizing bacteria was more diverse in the upland soils than the plastic film house soils. There was significant positive correlation between phosphate solubilization and phosphate-solubilizing bacteria in soils. Bacillus, Cedecea, Brevibacillus, Paenibacillus, Pseudomonas, Serratia spp. were isolated from upland soils and Bacillus and Cellulomonas spp. were from plastic film house soils.

Study on the Grow of Corn and Soybean in Artificial Soil (인공토양을 이용한 옥수수와 콩의 생육 연구)

  • 김선주
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.5
    • /
    • pp.59-69
    • /
    • 2000
  • Sludge is generated in the process of water and wastewater treatment, and it has been causing various environmental problems. From this point of view, recycling of sludge appears to be the best way. The firing technology in pottery industry is applied to the sludge treatment , and the final product is called artificial soil. The effect of mixed artificial soil with upland soil was investigated through the crop growth experiment and the physical & chemical characteristics of the mixed soils were analyses. After the growth experiment , mixed soil plots contained more CEC, OM, TN, TP than upland soil plots. This result shows that the artificial soil produced form sludge can be mixed with upland soil, and crop can be increased. From the growth analysis, growth of soybean and corn in the mixed soil plots was better than that in the original upland soil plots. Heavy metals contents in the mixed soil plots were within the quality standard. This is a promising result since in most cases heavy metals are the most concern in the application of sludge product to farmland.

  • PDF

Comparison of the Surface Chemical Properties of Plastic Film House, Upland, and Orchard Soils in Gyeongbuk Province

  • Park, Sang-Jo;Park, Jun-Hong;Kim, Chan-Yong;Seo, Young-Jin;Kwon, Oh-Heun;Won, Jong-Gun;Lee, Suk-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.2
    • /
    • pp.115-124
    • /
    • 2016
  • The objectives of this study were to evaluate the soil fertility about plastic film house, upland, and orchard in Gyeongbuk Province, Korea. The surface chemical properties of soil samples were investigated every 4 year from 2000 year at upland, 2001 year at orchard, and 2002 year at plastic film house. During 12 year's monitoring, mean soil pH was increased by 0.7 and 0.8 pH unit from pH 5.7 in upland and orchard, respectively, 0.5 pH unit from pH 6.5 in plastic film house. About 50% of all the field samples occupied within the recommended pH range (pH 6-7). Although soil organic matter (SOM) was gradually increased by about $10g\;kg^{-1}$ for 12 years, 40% of orchard, 49% of plastic film house, and 77% of upland soil samples were still below the 3% SOM. The mean concentration of available phosphate for 12 years in upland, orchard, and plastic film house were 530, 600, and $760mg\;kg^{-1}$, respectively. The relative frequencies exceeding the recommended available phosphate range ($300-550mg\;kg^{-1}$) were 43%, 53%, and 66% at upland, orchard, and plastic film house soils, respectively. $NH_4OAc$ exchangeable $K^+$ of upland, orchard, and plastic film house in the last soil test were 0.8, 0.9, and $1.6cmol_c\;kg^{-1}$, respectively. The relative frequencies above the recommended K level were 56% and 70% of orchard and plastic film house soil samples, respectively. The levels of crop nutrients except exchangeable Ca and Mg in upland soil were tended to increase gradually in the three fields. Exchangeable Mg, EC, available phosphate, organic matter and soil pH could be used as principle components to differentiate the chemical properties of three land fields. This analysis revealed that the soil fertility was affected by cropping method and field management, although additional research is needed to assess the importance of management on soil chemical properties and many fields indicate an opportunity for improvement in fertilizer management.

Status and Changes in Chemical Properties of Upland Soil from 2001 to 2017 in Korea (한국 밭토양 화학성 변동 평가)

  • Kim, Yi-Hyun;Kong, Myung-suk;Lee, Eun-Jin;Lee, Tae-Goo;Jung, Goo-Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.3
    • /
    • pp.213-218
    • /
    • 2019
  • BACKGROUND: Monitoring of the dynamic changes of chemical properties in agricultural land is very important for agricultural sustainability. Chemical properties of agricultural soils in Korea have been investigated at four-year interval in the order of paddy, plastic film house, upland, and orchard soils since 1999. METHODS AND RESULTS: Total 8,160 topsoil samples were taken from the upland in 2001, 2005, 2009, 2013, and 2017, respectively. Soil chemical properties such as pH, electrical conductivity (EC), organic matter (OM), available phosphate (Avail. $P_2O_5$), and exchangeable (Exch.) cations (K, Ca, and Mg) were analyzed. Soil pH and Exch. Ca contents have increased since 2001. Average concentration of Avail. $P_2O_5$ increased from $547mg\;kg^{-1}$ in 2001 to $657mg\;kg^{-1}$ in 2017. Average concentration of Exch. Ca in 2017 was higher than the upper limit of its optimal range for upland cultivation. Excess and deficiency of chemical properties of upland soils comply with soil analysis and fertilizer prescription. CONCLUSION: We concluded that excessive nutrient in upland needed to be properly managed with soil test.

Detection of soil microorganisms of an upland or cultivated Codonopsis lanceolata and investigation of them affecting on flavor substances (산더덕과 재배더덕에 존재하는 토양미생물 및 향기 유발에 영향을 미치는 미생물 탐색)

  • 김동주;이진실;정가진;이세윤
    • Korean journal of food and cookery science
    • /
    • v.20 no.4
    • /
    • pp.418-422
    • /
    • 2004
  • We investigated microbial populations of an upland and cultivated Codonopsis lanceolata. The microbial populations from both types of soils were also investigated. There were more than 10 microorganisms existed in upland than cultivated one. The total viable cell counts of C. lanceolata from upland and cultivated one, especially in the upper zone, were 9.7x10$\^$6/ CFU/g and 4.2${\times}$10$\^$6/ CFU/g, respectively. As a results, upper parts of C. lanceolata in upland were considered to harbour approximately more than 2.3 fold higher microorganisms than in cultivated one. However, the total viable cell counts between the two soil habitat, that is, 1.2${\times}$10$\^$7/ CFU/g from upland and 1.0x10$\^$7/ CFU/g from cultivated, were not significantly different. We also examined the unique flavor producing microorganisms in the soil extract broth including 25% C. lanceolata extract. One microorganism was detected in upper pars of C. lanceolata and upland soil. No. 6, microorganism causing the characteristic flavor of C. lanceolata was continued as Actinomyces by microscopy.

The effect of root zone environment on the growth of shoot and root of tobacco plant (연초의 근권환경이 뿌리와 지상부의 생육에 미치는 영향)

  • 이부경
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.11 no.2
    • /
    • pp.197-202
    • /
    • 1989
  • This experiment was conducted to investigate the effect of growth medium in pots composed of upland soil(S), rice straw manure(M), carbonated rice hull(CRH), and their mixture on growth of tobacco cv. NC 82. The growth of shoot and root was vigorous in order of medium S+M+CRH>M>CRH>S. In M+S medium, root growth in the part of manure was superior to upland soil. But root growth of upland soil part in M+S plot was more vigorous than that in upland soil only. It is possibly due to be influenced by manure in M+S plot. Total length and weight of root, number of roots, and especially for development of adventitious root were closely related to shoot growth. Roots grown in upland soil part was brownish gray in color, while the roots in manure part was milky white. The milky white colored roots had longer life than others. It was concluded that root zone environments derived from several media in pots closely related to shoot growth and disease tolerance of tobacco plant.

  • PDF

Impacts of Chemical Properties on Microbial Population from Upland Soils in Gyeongnam Province (경남지역 밭 토양 화학성분이 미생물 생태에 미치는 영향)

  • Lee, Young-Han;Ha, Sang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.242-247
    • /
    • 2011
  • Soil management for environment-friendly agriculture depends on the effects of soil microbial activities and soil fertility. To improve soil health for the upland crops, this study evaluated a relationship between soil chemical properties and soil microbial diversities at 25 sites in upland soils in Gyeongnam Province. The average nutrients in the upland soils were 1.7 times for available phosphorous, 1.4 times for exchangeable potassium and 1.5 times for exchangeable calcium higher compared to recommend concentrations in the upland soils. We found a significant positive correlation between the soil organic matter and the soil microbial biomass C (p<0.01). Contents of organic matter and dehydrogenase in the inclined piedmont soils were significantly higher than those in the other topographical soils (p<0.05). In addition, concentrations of organic matter and microbial biomass C in the loam soils were significantly higher than in the silt loam soils (p<0.05). In principal component analyses of chemical properties and microbial populations in the upland soils, our findings suggested that available phosphorous should be considered as potential factor responsible for the clear upland soils differentiation. The soil organic matter was positive correlation with Bacillus sp. and fungi, whereas soil pH was also positive correlation with Pseudomonas sp. in upland soils.

A Study on the Acidification of Soils (토양의 산성화에 관한 연구)

  • Park,Byeong-Yun;Eo,Yun-U;Yang,So-Yeong;Jang,Sang-Mun;Kim,Jeong-Ho;Lee,Dong-Hun
    • Journal of Environmental Science International
    • /
    • v.10 no.4
    • /
    • pp.305-310
    • /
    • 2001
  • pH($H_2O$), pH(KCI), CEC(cation exchange capacity), O.M.(organic matter) and exchangeable cations(K, Na, Ca, Mg) of paddy soil, upland soil and forest soil in Kumi city were investigated for the purpose of knowing soil acidification and the correlation between soil acidification and leaching of inorganic salts. The mean pH($H_2O$) values of paddy soil were 5.23(surface soil) and 5.69(subsoil) and 4.74(subsoil). The were 6.37(surface soil) and 6.11(subsoil), and those of forest soil were 4.67(surface soil) and 4.74(subsoil). The mean pH(KCl) values of paddy soil were 4.59(surface soil) and 4.98(subsoil) were 5.48(surface soil) and 5.04(subsoil), and those of forest soil were 3.82(surface soil) and 3.89(subsoil). The acidification of forest soil was more rapid than that of paddy soil and upland soil/ The total mean amounts of exchangeable cations(K, Na, Ca, Mg) in paddy soils were 6.14me/100g(surface soil) and 5.64me/100g(subsoil), and those in upland soils were 6.86me/100g(surface soil) and 6.65me/100g(subsoil), and those in forest soils were 4.06me/100g(surface soil) and 3.34me/100g(subsoil). The contents of inorganic salts in forest soil were much less than those of paddy soil and upland soil. The correlation coefficients(r) between pH($H_2O$) values and the total amounts of exchangeable cations in soils were $0.6635^{**}$(surface soil) and $0.6946^{**}$(subsoil), and those between pH(KCl) values and exchangeable cations in soils were 0.6629(surface soil) and $0.5675^{**}$(subsoil). The correlation between soil acidification and leaching of inorganic salts in soil was positively significant at 1% level.

  • PDF