• Title/Summary/Keyword: Upland Areas

Search Result 161, Processing Time 0.024 seconds

Effects of Long-Term Removal of Sheep Grazing on the Seedbanks of High-Level Grasslands and Blanket Bogs

  • Marrs, Rob H.;McAllister, H.A.;Cho, K.;Rose, Rob J.;O'Reilly, J.;Furnes, M.;Lee, Hyohyemi
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.1 no.1
    • /
    • pp.22-30
    • /
    • 2020
  • Many areas of vegetation in the British uplands have reduced species diversity as a result of sheep overgrazing. It has been suggested that abandonment or re-wilding strategies might be used to reverse this. A likely first step would be the removal or reduction of grazing livestock from upland areas, with a presumption that this would lead to a recovery in species richness. However, we do not know if this would work, or the timescales involved. One of the important areas where more knowledge is needed is information on the size and composition of soil seedbanks as regeneration from zseed is a likely pathway of recovery. Here, we compared seedbanks in both grazed and ungrazed plots in five experiments at Moor House NNR in the northern Pennines; these sheep grazing exclusion experiments were started 52 and 63/64 years ago. Soil samples (n=10) were collected from both grazed and ungrazed plots in each experiment, and seed emergence counted in glasshouse trials. We detected only seeds of common species and very few dicotyledonous species. This suggests that the soil seedbank is unlikely to be a reliable source of the less common species for ecological restoration in these upland communities, suggesting an extinction debt. Therefore, seed addition and the creation of suitable safe-sites for germination may be needed in conjunction with grazing controls to allow the establishment of plants that will increase the species richness of the vegetation. However, this interventionist restoration approach remains to be tested.

Analysis of Watershed Runoff and Sediment Characteristics due to Spatio-Temporal Change in Land Uses Using SWAT Model (SWAT 모형을 이용한 시.공간적 토지 이용변화에 따른 유량 및 유사량 특성분석)

  • Shin, Yong-Chul;Lim, Kyoung-Jae;Kim, Ki-Sung;Choi, Joong-Dae
    • KCID journal
    • /
    • v.14 no.1
    • /
    • pp.50-56
    • /
    • 2007
  • In this study, the Soil and Water Assessment Tool (SWAT) model was used to assess spatiotemporal effects on watershed runoff and sediment characteristics due to land uses changes from 1999 to 2002 at the small watershed, located in Chuncheon-si, Gangwon province. The annual average flow rate of Scenario I (long-term simulation using land use of 1990), II (long-term simulation using land use of 1996), III(long-term simulation using land use of 200) and IV(simulation using land use of 1990, 1995, and 2000) in long-term simulation) using the SWAT model were 29,997,043 m3, 29,992,628 m3, 29,811,191 m3 and 29,931,238 m3, respectively. It was shown that there was no significant changes in estimated flow rate because no significant changes in land uses between 1990 and 2000 were observed. The annual average sediment loads of Scenarios I, II, III and IV for 15 year period were 36,643 kg/ha, 45,340 kg/ha , 27,195 kg/ha and 35,545 kg/ha, respectively. The estimated annual sediment loads from Scenarios I, II, and III, were different from that from the scenario IV, considering spatio-temporal changes in land use and meterological changes over the years, by 10%, 127%, and temporal changes in land use and meterological changes over the years, by 10%, 127%, and 77%. This can be explained in land use changes in high soil erosion potential areas, such as upland areas, within the study watershed. The comparison indicates that changes in land uses upland areas, within the study watershed. The comparison indicates that changes in land uses can affect on sediment yields by more than 10%, which could exceed the safety factor of 10% in Total Maximum Daily Loads (TMDLs). It is, therefore, recommended that not only the temporal analysis with the weather input data but also spatial one with different land uses need to be considered in long-term hydrology and sediment simulating using the SWAT model

  • PDF

Studies on Microflora of the Paddy and Upland Soils of Korea -II. Distribution of Microflora of the Upland Soils (우리나라 논. 밭토양(土壤)의 미생물상(微生物相)에 관한 연구(硏究) -II. 밭 토양미생물(土壤微生物) 분포조사(分布調査))

  • Yoo, Ick-Dong;Yun, Seh-Young;Lee, Myong-Goo;Ryu, Jin-Chang;Huh, Beom-Lyang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.4
    • /
    • pp.406-414
    • /
    • 1984
  • Sixty upland soil samples were collected from various horticultural areas to find out the distribution status of soil miroflora. The result are summerized as follows: 1. The mean numbers of microflora in collected upland soils were $89.2{\times}10^6$ in bacteria (B), $30.1{\times}10^5$ in actinonmycetes(A), and $73.4{\times}10^3$ in fungi (F), per gr dry soil. The ratios B/F, B/A and A/F were 122, 3 and 41, respectively. 2. Soil microflora population among different cropping areas were following orders: Bacteria: facilitated horticultural crop > peper > garlic > ginger > oninon > near municipal vegetable > ginseng > grape > peanut area. Actinomycetes: garlic > pepper > near municipal vegetable > facilitated horticultural corp=ginger > onion ginseng > peanut > grape area. Fungi: facilitated horiticultural > crop > near municipal vegetable > peper > ginger > ginseng > grape > peanut garlic > onion area. 3. The significant correlation were obtained between the numbers of microflora and soil chemical properties, avaibale phosphorous, $Mg^{{+}{+}}$, $Ca^{{+}{+}}$, T-C and pH.

  • PDF

Assessment of Future Agricultural Land Use and Climate Change Impacts on Irrigation Water Requirement Considering Greenhouse Cultivation (시설재배를 고려한 미래 농지이용 변화와 기후변화가 관개 필요수량에 미치는 영향 평가)

  • SON, Moo-Been;HAN, Dae-Young;KIM, Jin-Uk;SHIN, Hyung-Jin;LEE, Yong-Gwan;KIM, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.120-139
    • /
    • 2020
  • This study is to assess the future agricultural land use and climate change impacts on irrigation water requirement using CLUE-s(Conversion of Land Use and its Effects at Small regional extent) and RCP(Representative Concentration Pathway) 4.5 and 8.5 HadGEM3-RA(Hadley Centre Global Environmental Model version 3 Regional Atmosphere) scenario. For Nonsan city(55,517.9ha), the rice paddy, upland crop, and greenhouse cultivation were considered for agricultural land uses and DIROM(Daily Irrigation Reservoir Operation Model) was applied to benefited areas of Tapjeong reservoir (5,713.3ha) for Irrigation Water Requirement(IWR) estimation. For future land use change simulation, the CLUE-s used land uses of 2007, 2013, and 2019 from Ministry of Environment(MOE) and 6 classes(water, urban, rice paddy, upland crop, forest, and greenhouse cultivation). In 2100, the rice paddy and upland crop areas decreased 5.0% and 7.6%, and greenhouse cultivation area increased 24.7% compared to 2013. For the future climate change scenario considering agricultural land use change, the RCP 4.5 and RCP 8.5 2090s(2090~2099) IWR decreased 2.1% and 1.0% for rice paddy and upland crops, and increased 11.4% for greenhouse cultivation compared to pure application of future climate change scenario.

Diurnal Variations in the Horizontal Temperature Distribution using the High Density Urban Climate Observation Network of Daegu in Summer (고밀도 도시기후관측 망 자료를 이용한 대구의 여름철 기온 수평 공간 분포의 일변화)

  • Kim, Sang-Hyun;Kim, Baek-Jo;Kim, Hae-Dong
    • Journal of Environmental Science International
    • /
    • v.25 no.2
    • /
    • pp.259-265
    • /
    • 2016
  • We analyzed diurnal variations in the surface air temperature using the high density urban climate observation network of Daegu in summer, 2013. We compared the time elements, which are characterized by the diurnal variation of surface air temperature. The warming and cooling rates in rural areas are faster than in urban areas. It is mainly due to the difference of surface heat capacity. In addition, local wind circulation also affects the discrepancy of thermal spatiotemporal distribution in Daegu. Namely, the valley and mountain breezes affect diurnal variation of horizontal distribution of air temperature. During daytimes, the air(valley breeze) flows up from urban located at lowlands to higher altitudes of rural areas. The temperature of valley breeze rises gradually as it flows from lowland to upland. Hence the difference of air temperature decreases between urban and rural areas. At nighttime, the mountains cool more rapidly than do low-lying areas, so the air(mountain breeze) becomes denser and sinks toward the valleys(lowlands). As the result, the air temperature becomes lower in rural areas than in urban areas.

Characteristics of Temperature Variation in Urban and Suburban Areas During Winter (겨울철 도시지역과 교외지역의 기온변화 특성)

  • Kwon, Sung-Ill;Kim, Jin-Soo;Park, Jong-Hwa;Oh, Kwang-Young;Song, Chul-Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.2
    • /
    • pp.55-63
    • /
    • 2008
  • We investigated characteristics of temperature variation in urban and suburban areas(e.g., paddy field, upland, park, residential area) and urban heat island(UHI) during winter(December 2005 to February 2006). The daily maximum air temperature was not significantly different between suburban and urban areas, whereas the daily minimum air temperatures were significantly lower in the suburban areas than that in the residential area. The wind speed in the urban park(0.3 m/s) was much lower than that in the paddy fields(2.3 m/s), likely due to an urban canopy layer formed by high buildings. The UHI intensity was represented by differences in daily minimum temperatures between urban residential and paddy field areas. The UHI intensity($4.1^{\circ}C$) in winter was larger than that($2.6^{\circ}C$) in summer. This may be because a stable boundary layer develops in the winter, and thereby this inhibits diffusion of heat from surface.

Vulnerability assessment of upland public groundwater wells against climate change

  • Shin, Hyung Jin;Lee, Jae Young;Jo, Sung Mun;Cha, Sang Sun;Park, Chan Gi
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.3
    • /
    • pp.577-596
    • /
    • 2020
  • Drought is a natural disaster that directly affects agriculture, which has a great impact on the global agricultural production system and yield. The lack of water storage in most parts of the country due to the lack of precipitation has caused a great increase in social interest in drought due to the dryness of rice fields and crops. As the drought period increases and the drought intensity becomes stronger, it is believed that drought damage to crops will continue; thus, it is necessary to understand the vulnerability to irrigation performance and the ability of irrigation facilities. Therefore, this study conducted a vulnerability assessment of irrigation facilities (public Groundwater well) in cities across the country. The survey was conducted using statistical data from 2007 to 2016, and the vulnerability score was calculated according to the vulnerability evaluation procedure for drought in the irrigation facilities (public groundwater wells). Among 157 regions, 136 areas were very vulnerable; 14 areas were vulnerable; 3 areas were normal; 4 areas were good, and 0 areas were excellent. The vulnerability assessment can be used as basic data for the development or maintenance of field irrigation facilities in the future by understanding the vulnerability of irrigation facilities.

Farmland Use Mapping Using High Resolution Images and Land Use Change Analysis (고해상도 영상을 이용한 농경지 지도 작성 및 토지이용 변화 분석)

  • Lee, Kyungdo;Hong, Sukyoung;Kim, Yihyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1164-1172
    • /
    • 2012
  • This study aims to make a "farmland use map" using high-resolution images and to analyze the land use change for about 8 years in Goyang, Namyangju, and Yongin cities. We have made a new numerical map named as a farmland use map using high-resolution images taken mostly in 2007 and digital topographical maps in Goyang, Namyangju, and Yongin cities near metropolitan areas to classify farmland use of paddy, upland, plastic film house, and orchard. We also made a land use map by overlaying the farmland use map and the land registration map of each city made in 2007, and compared the land use map made by RDA (Rural Development Administration) in 1999. Paddy areas decreased at a range of 3,000 to 5,000 ha during 8 years and were changed to residential areas in the cities. Upland and orchard areas also showed similar tendency and were changed to residential areas as well. On the other hand, the areas of the plastic film houses in the cities showed an increase or same in size. It is suggested that farmland use map can be broadly used as a base map for various survey projects including soil survey, statistics, and farmland information management.

Occurrence of Weed Species on Turf Sod Production Areas in Jangsung-gun, Jeonnam Province (전남 장성지역 한국잔디 재배지 잡초발생 현황)

  • Choi, Sung Hwan;Ahn, Soo Jeong;Lee, Dong Woon
    • Weed & Turfgrass Science
    • /
    • v.5 no.4
    • /
    • pp.247-255
    • /
    • 2016
  • This study was conducted to provide basic information for weed control by surveying the occurrence of weed species in turf sod production areas. Surveys of weed species occurred in turf sod production areas were conducted in Jangsung-gun, Jeonnam province from September 2014 to May 2016. Total 50 sites of turf sod production areas in two soil conditions were investigated. On the upland soil condition in turf sod production areas, 66 weed species in 27 families were identified and classified to 49 annuals and 17 perennials and on the paddy soil condition, 69 weed species in 22 families were identified and classified to 53 annuals and 16 perennials. Based on the importance values, the most dominant weed species on the upland soil condition in the first survey (September 2014) was Digitaria ciliaris (8.49%), followed by Erigeron annuus (7.94%) and Rorippa indica (6.56%). In the second survey (May 2016) was Oxalis corniculata (7.26%), followed by Capsella bursa-pastoris (6.21%) and Conyza canadensis (6.21%). Whereas the most dominant weed species on the paddy soil condition in the first survey (September 2014) was Erigeron annuus (9.52%), followed by Mazus pumilus (7.41%) and Cyperus iria (6.82%). In the second survey (May 2016) was Commelina communis (5.08%), followed by Alopecurus aequalis (5.08%) and Erigeron annuus (4.79%). This information could be useful for estimation of future weed occurrence and effective weed control methods in turf sod production areas in Jangsung-gun, Jeonnam Province.

Economic Feasibility of Hill Land Development (산지개발(山地開發)의 경제성)

  • Kim, Dong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.11 no.4
    • /
    • pp.283-295
    • /
    • 1979
  • A new Farmland Expansion and Development Promotion Law was enacted in 1975. This law authorizes the Government to undertake development within a declared "reclamation area", wherever the land owners are unable to do so. In order to give additional impetus to conversion of waste hilly land into productive farmland, these hilly land development projects were conducted as large scale scheme which include soil fertility improvements such as the application of lime and phosphate. Farmland Expansion and Development Promotion Corps has attempted to undertake annual farm surveys in order to obtain some information about hilly land agriculture and farming operations within the reclamation project areas since 1976. As survey data accumulates, more and more clear picture of hilly land farming come to appear and enable us to conduct in-depth study. Effects of such upland reclamation include converting of previously unproductive slopeland into cultivable farmland for lucrative and commercial farming or food production. Furthermore, idle or marginal resources such as farm labor, equipment and compost would be fully employed. Socio-economic effects would include increases in land value and attitude change of farmers. On the other hand the preservation of natural environments might be damaged to the some extend by the projects. As shown in Table 7, the average farm size increased from 3,156 pyeong($3.3m^2$) to 5,562 pyeong, a 76.2% increase. The proportion of small farms with less than I ha dropped from 59.8% to 34.4%, but that of the large farms over 2 ha rose from 13.1% to 32.0% (See Table 8). The survey results indicate that as the farming on reclaimed uplands become time-honored, the acreage devoted for food crop production decreases against the economic crop growing acreage (see Table 6). For example, in the case of uplands reclaimed in 1972, the ratio of food crop acreages decreased from 99.7% in 1972 to 62.5% in 1977, whereas that of economic crop acreages increased from 0.3% in 1972 to 37.5% in 1977. The government used to actively encourage the farmers to carry out food crop production in the reclaimed upland targting toward the realization of self-sufficiency in food grains. It is, however, apparent that the farmers did hardly take the government advises as far as their economic interest were concerned. Yield per 10a. of various crops from the reclaimed uplands by year were surveyed as seen in Table 12. On the average, barley production in the reclaimed areas achieved 83.3% of the average unit yield from the existing upland in its 5 th year. Soybean yields showed a modest increase from 64% in the first year to 95%, in the 5 th year. In contrast, economic crops such as red pepper, totacco and radish achieved their maximum target yields in 3 years from starting to cultivate on the reclaimed farms. In order to test the post economic viability, an economic analysis was performed for each of selected subprojects on the basis of the data obtained through survey. The average actual internal economic rate of return on upland reclamation investments was found to be 20.3% which exceeded other types of projects of land and water development such as tidal land reclamation, irrigation or paddy rearrangement. The actual IRRs of subcategories of upland reclamation projects varied from 17.9% to 21.4% depending upon the kinds of cropping system adopted in each reclaimed areas such as food, economic, fruit or forage crops.

  • PDF