• Title/Summary/Keyword: Upland Areas

Search Result 161, Processing Time 0.029 seconds

Nutritional Constraints and Possibilities for Pig Production on Smallholders Farms in Central Vietnam

  • Tu, Pham Khanh;Hoang, Nghia Duyet;Le Duc, Ngoan;Hendriks, W.H.;Verstegen, M.W.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.2
    • /
    • pp.253-262
    • /
    • 2010
  • This study aimed to evaluate the nutritional situation of pigs kept in three ecological zones of central Vietnam: Upland, Lowland and Coastal Area. An interview-based questionnaire was made and surveys were conducted in 27 villages and data were collected from 1,200 participating households. The current study showed that amounts of feed and crude protein content in the diets for fattening pigs and sows are deficient for all three regions. Amounts of feed as DM (kg/d) fed to growing pigs of 20-50 kg BW was deficient by 0.54 kg (29%) in Lowland, 0.53 kg (28.6%) in the Coastal area and 0.42 kg (22.4%) in Upland. The deficiency in CP in the diets of growing pigs in this period (20-50 kg) was largest at 20.7 g/d (62.1%) in Lowland, following by 22.1 g/d (66.4%) in Coastal and 23.2 g/d (69.7%) in Upland. Amount of feed as DM (kg/d) fed to growing pigs of 50-90 kg BW had a deficiency of 1.26 (48.9%), 1.25 (51.2%) and 1.14 (51.5%) kg/d in Lowland, Coastal and Upland, respectively. The deficiencies in crude protein in the growing diet during this period in Lowland, Coastal and Upland regions were 27 g/d (68.3%), 29 g/d (71.9%) and 30 g/d (74.6%), respectively. The deficiency in DM intake (kg/d) of pregnant sows in the Lowland area was 0.3 kg (15%), 0.33 kg (16%) in the Coastal area and 0.47 kg (23.5%) in the Upland area. Crude protein content in the diet of pregnant sows raised in Lowland was 8 g/d (32.0%) deficient, in the Coastal region the deficiency was 11 g/d (42.7%) and in Upland this deficiency was 15 g/d (61.2%). The deficiency in DM intake (kg/d) of lactating sows raised in Lowland was 1.47 kg (31.1%), in the Coastal area this was 1.69 kg (39.2%) and in Upland it was most deficient at 2.46 kg (57.1%). The lack of crude protein content in the diets of sows raised in Lowland was 45 g/d (63.4%), in the Coastal region it was 46 g/d (65%), and in Upland it was 55 g/d (78.9%). The low input of feed in these areas is especially due to low quality and to the insufficient intake of nutrients by the pig. As a result, production and income of farmers are low.

A Study on the Upland Use Plans Using Farm Manager Registration Information and Spatial Data (농업경영체 등록정보와 공간데이터를 활용한 밭 이용 방안 연구: 전라남도 무안군·해남군을 중심으로)

  • Oh, Yun-Gyeong;Yoo, Seung-Hwan;Choi, Soo-Myung;Lee, Jimin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.4
    • /
    • pp.27-35
    • /
    • 2018
  • Food consumption pattern changes, including a decrease in rice consumption and increasing demand for fresh vegetables, along with declining food self-sufficiency rate, more importance is being placed on agricultural industry within Korea. Taking these changes into consideration, there is an increasing necessity for managing upland fields on agricultural sector to revitalize agricultural land use. Therefore, in this study, upland use type was classified into agricultural economic, environmental conservation, and rural social frames. The purpose of this study was to suggest upland use plan with farm manager registration information and spatial data. As results of this analysis, the mean area of agricultural economic frame in Haenam (16.47 ha) was found to be wider than Muan (3.17 ha), and scale improvement zones (54 zones) were located in only Haenam. In case of environmental conservation frame, there's no zone of scenic agriculture land in both study areas, but landuse transition zones were located in Muan (278 zones) and Haenam (604 zones). Agro-healing zones of rural social frame were 1,018 zones in Muan and 1,588 zones in Haenam and kitchen garden sites were 342 zones in Muan and 370 zones in Haenam. These results could be used when we establish the plan of an agricultural infrastructure project or select places for a collaborative agricultural land use project.

Experimental Study on the Drawbar Pull and Structural Safety of an Onion Harvester Attached to a Tractor (트랙터 부착형 양파수확기의 작업 속도에 따른 견인 부하와 구조 안정성에 관한 실험적 연구)

  • Shin, Chang-Seop;Kim, Jun-Hee;Ha, Yu-Shin;Park, Tusan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.4
    • /
    • pp.16-25
    • /
    • 2019
  • Recently, due to labor shortages in rural areas within South Korea, the demand for upland-field machinery is growing. In addition, there is a lack of development of systematic performance testing of upland-field machinery. Thus, this study examined structural safety and drawbar pull based on soil properties, as a first step for systematic performance testing on the test bed. First, the properties of soil samples from 10 spots within the experimental site were examined. Second, the strain was measured and converted into stress on 8 points of an onion harvester that are likely to fail. More specifically, the chosen parts are linked to the power, along with the drawbar pull, using a 6-component load cell equipped between the tractor and the onion harvester. The water content of the soil ranged between 5.7%-7.5%, and the strength between 250-1171 kPa. The test soil was subsequently classified into loam soil based on the size distribution ratio of the sieved soil. The onion harvester can be considered as structurally safe based on the derived safety factor and the drawbar pull of 115-1194 kgf, according to the working speed based on agricultural fieldwork.

Enhancement of flood stress tolerance for upland-adapted cereal crops by the close mixed-planting with rice

  • Iijima, Morio;Awala, Simon K;Hirooka, Yoshihiro;Yamane, Koji
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.44-44
    • /
    • 2017
  • Recently, the occurrences of extreme flooding and drought, often in the same areas, have increased due to climate change. We tested the hypothesis that wetland species could help upland species under flood conditions; that is, the roots of wetland crops may supply $O_2$ to the roots of upland crops by a series of experiments conducted in both humid Japan and semi-arid Namibia (See Iijima et al, 2016 and Awala et al, 2016). Firstly, flooding tolerance of upland-adapted staple crops-pearl millet (Pennisetum glaucum) and sorghum (Sorghum bicolor) mix-cropped with rice (Oryza spp.) was investigated in glasshouse and laboratory experiments in Japan. We found a phenomenon that strengthens the flood tolerance of upland crops when two species-one wetland and one drought tolerant-were grown using the mixed cropping technique that results in close tangling of their root systems, hereinafter referred to "close mixed-planting". This technique improved the photosynthetic and transpiration rates of the upland crops subjected to flood stress ($O_2$-deficient nutrient culture). Oxygen transfer was suggested between the two plants mix-cultured in water, implying its contribution to the phenomenon that improved the physiological status of upland crops under the simulated flood stress. Secondly, we further tested whether this phenomenon would be expressed under field flood conditions. The effects of close mixed-planting of pearl millet and sorghum with rice on their survival, growth and grain yields were evaluated under controlled field flooding in semi-arid Namibia during 2014/2015-2015/2016. Single-stand and mixed plant treatments were subjected to 11-22 day flood stress at the vegetative growth stage. Close Mixed-planting increased seedling survival rates in both pearl millet and sorghum. Grain yields of pearl millet and sorghum were reduced by flooding, in both the single-stand and mixed plant treatments, relative to the non-flooded upland yields, but the reduction was lower in the mixed plant treatments. In contrast, flooding increased rice yields. Both pearl millet-rice and sorghum-rice mixtures demonstrated higher land equivalent ratios, indicating a mixed planting advantage under flood conditions. These results indicate that mix-planting pearl millet or sorghum with rice could alleviate flood stress on dryland cereals. The results also suggest that with this cropping technique, rice could compensate for the dryland cereal yield losses due to field flooding. Mixed cropping of wet and dryland crops is a new concept to overcome flood stress under variable environmental conditions.

  • PDF

Applications of WEPP Model to a Plot and a Small Upland Watershed (WEPP 모형을 이용한 밭포장과 밭유역의 토양 유실량 추정)

  • Kang, Min-Goo;Park, Seung-Woo;Son, Jung-Ho;Kang, Moon-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.1
    • /
    • pp.87-97
    • /
    • 2004
  • The paper presents the results from the applications of the Water Erosion Prediction Project (WEPP) model to a single plot, and also a small watershed in the Mid Korean Peninsula which is comprised of hillslopes and channels along the water courses. Field monitoring was carried out to obtain total runoff, peak runoff and sediment yield data from research sites. For the plot of 0.63 ha in size, cultivated with com, the relative error of the simulated total runoff, peak runoff rates, and sediment yields using WEPP ranged from -16.6 to 22%, from -15.6 to 6.0%, and from 23.9 to 356.4% compared to the observed data, respectively. The relative errors for the upland watershed of 5.1 ha ranged from -0.7 to 11.1 % for the total runoff, from -6.6 to 35.0 % for the sediment yields. The simulation results seem to justify that WEPP is applicable to the Korean dry croplands if the parameters are correctly defined. The results from WEPP applications showed that the major source areas contributing sediment yield most are downstream parts of the watershed where runoff concentrated. It was suggested that cultural practice be managed in such a way that the soil surface could be fully covered by crop during rainy season to minimize sediment yield. And also, best management practices were recommended based on WEPP simulations.

Analysis of Sediment Reductions Effects of VFS Systems for the General Characteristics of Uplands in Korea (우리나라 일반적인 밭경지 특성을 고려한 초생대 유사저감효과 분석)

  • Seo, Jeong-Hoon;Choi, Kyung-Sook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.4
    • /
    • pp.121-131
    • /
    • 2013
  • This study focused on the sediment reduction effects of VFS (vegetative filter strip) systems for the general characteristics of uplands in Korea. General conditions of upland fields were investigated through national scales of annual agricultural statistics. 7-15 % of slope with loam soil was the dominant types of uplands, and the hydrologic soil group feature usually belong to Type B. The common sizes of uplands were bigger than 0.1 ha and less than 0.2 ha, and 86.2 % of them account for less than 1.0 ha. With this information, 0.1 ha, 0.5 ha, and 1.0 ha of uplands with various shapes and 7-15 % of slopes were considered for the VFS system simulations. 20 mm, 40 mm, and 100 mm of daily precipitation were applied. As a result, the trapping efficiencies of VFS systems were obtained 37.4~100 % for 7 % slope and 18.1~98.0 % for 15 % slope of the less than 1.0ha of uplands. As rainfall increased, sediment loads also increased with slope and slope length increase. Also as size and slope of uplands and slope length increased with VFS length decrease, the trapping efficiency decreased for the same amount of rainfall. The optimum lengths of VFS systems for the givien upland conditions were suggested based on the modelling results with condition of VFS length less than 20 % of upland areas.

Hourly SWAT Watershed Modeling for Analyzing Reduction Effect of Nonpoint Source Pollution Discharge Loads (비점원오염 저감효과 분석을 위한 시단위 SWAT 유역 모델링)

  • Jang, Sun Sook;Ahn, So Ra;Choi, Joong Dae;Kim, Seong Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.1
    • /
    • pp.89-97
    • /
    • 2015
  • This study is to assess the effect of non-point source pollution discharge loads between tillage and no-tillage applications for upland crop areas using SWAT (Soil and Water Assessment Tool) watershed modeling. For Byulmi-cheon small rural catchment ($1.17km^2$) located in upstream of Gyeongan-cheon watershed, the rainfall, discharge and stream water quality have been monitored in the catchment outlet since 2011. The SWAT model was calibrated and validated in hourly basis using 19 rainfall events during 2011-2013. The average Nash-Sutcliffe model efficiency and $R^2$ (determination coefficient) for streamflow were 0.67 and 0.79 respectively. Using the 10 % surface runoff reduction from experiment results for no-tillage condition in field plots of 3 % and 8 % slopes under sesami cultivation, the soil saturated hydraulic conductivity for upland crop areas was adjusted from 0.001 mm/hr to 0.0025 mm/hr in average. Under the condition, the catchment sediment, T-N (total nitrogen, TN), and T-P (total phosphorus, TP) discharge loads were reduced by 6.9 %, 7.4 %, and 7.7 % respectively.

Comparative Analysis of Classification Accuracy for Calculating Cropland Areas by using Satellite Images (위성영상별 경지면적 분류 정확도 비교 분석)

  • Jo, Myung-Hee;Kim, Sung-Jae;Kim, Dong-Young;Choi, Kyung-Sook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.47-53
    • /
    • 2012
  • Recently many developed countries have used satellite images for classifying cropland areas to reduce time and efforts put into field survey. Korea also has used satellite images for the same purpose since KOMPSAT-2 was successfully launched and operated in 2006, but still far way to go in order to achieve the required accuracy from the products. This study evaluated the accuracy of the calculated croplands by using the objected classification method with various satellite images including ASTER, Spot-5, Rapid eye, Quickbird-2, Geo eye-1. Also, their usability and effectiveness for the cropland survey were verified by comparing with field survey data. As results. Geo eye-1 and Rapid eye showed higher accuracy to calculate the paddy field areas while Geo eye-1 and Quickbird-2 showed higher accuracy to calculate the upland field areas.

A Study on the Assessment of Growing Conditions and Production Capacity in the Upland-Field Area of Highland - Focused on Kimchi-Cabbage, Radish, Potato - (농업 생산기반 능력 및 재배여건을 이용한 고랭지 작물 주산지의 생산역량 분석 - 배추, 무, 감자를 중심으로 -)

  • Jung, Hyun-Woo;Kim, Dae-Sik;Bae, Seung-Jong;Park, Jung-Soo;Kim, Han-Joong
    • Journal of Korean Society of Rural Planning
    • /
    • v.22 no.4
    • /
    • pp.131-138
    • /
    • 2016
  • Recently, the cultivated area is reduced, the ratio of upland-field in the total cultivated area is increasing relative appeared in 36.2% in 1990 from 43.7% in 2013. If upland-field can be applied well designed-infrastructure, good income crop production is possible, however, maintenance of infrastructure and a significant portion of the upland-field is maintained under insufficient infrastructure. While imports of agricultural products expanded since the 2000s in progress, looking at the self-sufficiency of upland-field crops, it is reduced to from 90% to 42% for the pepper, it is from 90% to 74% for the garlic, cereals is reduced from 42% by 26%. As a result of these conditions, the competitiveness of farmers has weakened, the risk to meet the challenges of this area of production and supply reduction increased. This study was the first to conduct a basic evaluation index, data analysis and evaluation of indicators to diagnose the agricultural production capacity of the upland field. 12 kinds classified index of producing conditions from the natural environment and eight factors for the cultivation and production capabilities have developed for the assessment of productivity of upland-field (especially Kimchi cabbage). Through this regional imbalance was found, based on the production capabilities conditions are good in Haenam, Gangneung, Pyeongchang. 3 Regions have been low and the lowest Youngwol to 0.8992. Climate(Cultivation conditions) indicators of Mungyeong region is the highest, relatively low areas were in Taebaek. In particular, it is determined to be preferred that the area required for the enhancing the production environment based on providing the convenience for the producing and maintenance of the first production area. It is necessary Increasing part of mechanization, agro-industrial competitiveness through aggressive management plans for facilities as required in the process of post-harvest storage, processing, distribution line can be improved.

Developing a Nature Hazard Vulnerability Map of Yangyang and its Vicinity (양양의 자연재해 취약지 추정)

  • Myeong, Soo-Jeong;Hong, Hyun-Jung;Choi, Hyun-Il
    • Proceedings of the KSRS Conference
    • /
    • 2009.03a
    • /
    • pp.237-241
    • /
    • 2009
  • Yangyang Gangwon-do has begun the clearing of upland forested areas for development. This process has caused great damage from natural hazards such as landslides and flooding for many years. Moreover, proper hazard prevention strategies have not Yet been prepared. To provide useful information for developing hazard prevention strategies this study attempted to detect areas vulnerable to flooding in Yangyang using data such as topology, meteorology, history, land use, soil, hydrology, and society. It was found that roughly 30% of the study area was vulnerable to flooding. Also it was discovered that where the vulnerability index was high, there was increased amounts of flooding. The most vulnerable areas were where forests were cut and near livers. In addition, areas where frequent hazard events were reported had a high index of vulnerability. The results of this study will provide useful information in developing hazard prevention strategies.

  • PDF