• 제목/요약/키워드: Update Reliability

검색결과 119건 처리시간 0.025초

도로 네트워크 환경에서 이동 객체 위치 예측을 위한 효율적인 인덱싱 기법 (An Efficient Indexing Technique for Location Prediction of Moving Objects in the Road Network Environment)

  • 홍동숙;김동오;이강준;한기준
    • 한국공간정보시스템학회 논문지
    • /
    • 제9권1호
    • /
    • pp.1-13
    • /
    • 2007
  • 현재 무선 통신 기술과 위치 정보 기술의 발달은 다양한 위치 기반 서비스(LBS: Location Based Services)의 발전을 가져왔으며, 위치 기반 서비스에서 이동 객체의 미래 위치를 빠르게 예측하기 위한 미래 인덱스의 필요성이 높아지고 있다. 미래 인덱스와 관련한 대표적인 연구로써 도로 네트워크 환경에서 이동 객체의 과거 궤적 정보를 이용하여 신뢰성을 높인 확률 궤적 예측 기법이 연구되었다. 그러나, 이 기법은 장기간 미래 질의 시 방대한 미래 궤적 탐색 부하로 인해 예측 성능이 떨어지게 되며, 이 때문에 발생하는 빈번한 미래 궤적 갱신으로 인해 인덱스 유지비용이 매우 높아지게 된다. 따라서, 본 논문에서는 효율적인 장기간 미래 위치 예측을 위한 셀 기반의 미래 인덱싱 기법인 PCT-Tree(Probability Cell Trajectory-Tree)를 제시한다. PCT-Tree는 방대한 과거 궤적의 확률을 셀 단위로 재구성함으로써 인덱스 크기를 줄이고, 장기간 미래 질의의 예측 성능을 개선시킨다. 또한, 과거 궤적 정보를 이용하여 신뢰성있는 미래 궤적을 예측함으로써 미래 궤적 예측 오류에 따르는 통신비용과 미래 궤적 갱신으로 인한 인덱스 재구성 비용을 최소화 할 수 있다. 실험을 통해 도로 네트워크 환경에서 PCT-Tree가 기존 인덱싱 기법보다 장기간 미래 질의 성능이 우수함을 입증하였다.

  • PDF

시그모이드 추정과 임계 판정 가중 오차를 사용한 새로운 SDD 등화의 자기적응 성능 개선 (Self-Adaptive Performance Improvement of Novel SDD Equalization Using Sigmoid Estimate and Threshold Decision-Weighted Error)

  • 오길남
    • 한국산학기술학회논문지
    • /
    • 제17권8호
    • /
    • pp.17-22
    • /
    • 2016
  • 고차 QAM 시스템에 대한 자기적응 등화에서 눈 모형이 완전히 닫힌 등화 초기에 적용하여 눈 모형을 빠르게 열뿐만 아니라 정상상태 오차 레벨을 크게 낮추는 새로운 SDD 알고리즘을 제안한다. 제안 방법은 M-QAM 응용에서, 관찰에 가장 인접한 두 심볼을 추정의 기반으로 함으로써 기존 SDD의 계산 복잡성을 최소화하고, QAM 차수에 무관하게 연판정을 크게 단순화하였다. 아울러 심볼 추정에 임계 함수에 비해 오판정 회피가 우수한 시그모이드 함수를 적용, 추정의 신뢰도를 높였다. 또한 등화기 갱신을 위한 오차 발생 시 임계 함수에 의한 심볼 판정 값을 오차에 가중하여 오차 변동 범위를 확장함으로써 제안한 자기적응 등화기의 초기화 성능을 개선하였다. 결과적으로 제안 방법은 기존 SDD의 계산 복잡성과 초기화 및 수렴 특성을 현저히 개선하였다. 부가 잡음이 존재하는 다중경로 채널 조건에서 64-QAM 및 256-QAM에 대한 모의실험을 통해 CMA와 제안한 2-SDD 및 가중된 2-SDD의 두 가지 형태의 성능을 비교하고 제안 방법의 유용성을 확인하였다.

AI기반 상수도시설 개량 의사결정 모델 분석 (Model Analysis of AI-Based Water Pipeline Improved Decision)

  • 김기태;민병원;오용선
    • 사물인터넷융복합논문지
    • /
    • 제8권5호
    • /
    • pp.11-16
    • /
    • 2022
  • 상수도분야 인공지능 기술개발 관심도가 증가함에 따라 상수도 관로에 대해서 노후관 상태평가 데이터 결과를 활용하여 반복적인 학습으로 개량 의사결정 등급을 예측할 수 있는 인공신경망 알고리즘을 개발하고 검증과정을 통하여 가장 신뢰성 있는 예측 모델을 제시하고자 한다. 2020년 한강유역의 노후관로 정비 기본계획에 의한 간접평가 데이터 12개 항목을 기반으로 데이터 전처리 하고 인공신경망 알고리즘을 적용하여 반복학습과 검증을 통해 계산된 결과값과 직접평가 결과값의 일치율이 90% 이상이 되도록 역전파 과정을 통해 가중치를 업데이트 하면서 최적화하여 관로 등급을 예측하는 알고리즘을 개발하였다. 알고리즘 정확도 검증결과 모든 관종 데이터가 고르게 분포되어 있고 학습 데이터가 많아야 예측평가 정확도가 높아지는 것을 확인할 수 있었다. 향후 전국의 다양한 데이터가 확보되면 인공신경망을 이용한 관로등급 예측의 신뢰도가 좀 더 향상되어 객관화된 노후관 상태평가 의사결정 지원 역할을 수행할 수 있을 것으로 기대된다.

반응형 웹 기반 선박 보조기기 및 배관 상태 진단 모니터링 시스템 구현 (Implementation of Responsive Web-based Vessel Auxiliary Equipment and Pipe Condition Diagnosis Monitoring System)

  • 박순호;최우근;최경열;권상혁
    • 한국항해항만학회지
    • /
    • 제46권6호
    • /
    • pp.562-569
    • /
    • 2022
  • 기존 운항선박에 적용되어 있는 알람 모니터링 기술은 온도, 압력 등의 데이터 항목을 AMS(Alarm Monitoring System)으로 관리하고 해당 센싱 데이터가 정상 수준 범위를 초과할 경우만 선원에게 알람을 제공한다. 또한 기존 선박의 정비는 PMS(Planned Maintenance System)를 따른다. 이는 장비로부터 측정된 센싱 데이터가 설정범위 이상으로 측정되어 이에 따른 알람을 통해 정비하거나, 대상 기기의 고장 유무에 관계없이 일정 시간 사용 후 해당 부품을 사전에 교체하는 방식으로 운영되고 있다. 하지만 선박 기관운영의 신뢰성과 운항 안전성을 확보하기 위해서는 실시간 상태 모니터링 데이터 기반의 사전적 진단 및 예측이 가능해야 한다. 그러기 위해서 실선 데이터를 종합적으로측정하여 데이터베이스화 하고 이를 선박의 보조기기와 배관의 상태기반 예지보전을 위한 상태 진단 모니터링 시스템을 구현하고자 한다. 특히 반응형 웹 기반으로 선박의 보조기기와 배관 상태 정보를 관리할 수 있도록 하였으며, 선내 개인용 컴퓨터(Personal Computer, PC)에서 보는 용도뿐만 아니라 스마트폰 등 다양한 모바일 기기의 접근 및 활용이 가능하도록 화면과 해상도에 맞춰 최적화된 상태 관리가 가능하도록 하여 업데이트 비용이 적게 들며, 관리 방법도 쉽다. 본 논문에서는 자율운항선박 핵심 기술인 상태기반정비(Condition Based Management, CBM) 기술력을 확보하기 위해 선박의 보조기기 중 펌프와 청정기, 그리고 배관 중 해수 및 스팀 배관의 상태 진단 모니터링을 통해 이상 현상을 파악하고, 이를 통해 융합 분석할 수 있도록 선박 보조기기 및 배관의 성능 진단 및 고장 예측에 활용하여 예방정비 의사결정을 지원하고자 한다.

Mean-Shift의 색 수렴성과 모양 기반의 재조정을 이용한 실시간 머리 추적 알고리즘 (A Real-Time Head Tracking Algorithm Using Mean-Shift Color Convergence and Shape Based Refinement)

  • 정동길;강동구;양유경;나종범
    • 대한전자공학회논문지SP
    • /
    • 제42권6호
    • /
    • pp.1-8
    • /
    • 2005
  • 이 논문에서는 팬-틸트-줌 기능을 가지는 실시간 능동카메라 시스템에 적합한 2단계 머리 추적 알고리즘을 제안한다. 먼저, 색 수렴 단계에서는 머리의 모양을 타원으로 가정하고 모델 색-히스토그램을 얻는다. 그 후, 모델과 후보 타원의 색-히스토그램간의 유사도를 검사하여 목표 물체의 대략적인 위치를 구하기 위해 mean-shift 방법을 이용한다. 여기에서 영상 내 물체 영역의 색 분포가 카메라의 관찰 방향에 따라 달라지는 것을 고려하기 위하여, 모델 히스토그램 뿐 아니라 이전 프레임에서 얻어진 타원의 색 히스토그램도 함께 고려함으로써 mean-shift의 수렴성을 향상시킨다. 특히, 이전 프레임에서 결정된 타원 내부의 가장자리 영역에 포함되어 있는 배경 색 성분에 의한 오류 누적 문제를 해소하기 위해, 모델 히스토그램을 이용하여 타원의 크기를 적응적으로 축소함으로써 이전 추적 결과중 머리 영역에 해당되는 색 히스토그램을 얻는다. 또한 영상 내의 전역 움직임을 예측하고 이를 보상하여 정확한 초기 위치를 찾음으로써 mean-shift의 색 수렴성을 더욱 향상시킨다. 이 때, 고속 움직임 추정을 위해 1-D 투사 데이터 기반의 방법을 제안한다. 다음 단계에서는, 모양 정보를 이용하여 수렴단계에서 얻어진 타원의 위치와 크기를 보다 정확히 재조정한다. 이를 위해 영상 내 경사도의 방향에 기반한 강건한 모양 유사도 함수를 정의하고 사용한다. 다양한 환경을 고려한 실험을 통하여, 사람의 움직임이 빠른 경우, 영상 내 머리 크기의 변화가 심한 경우, 그리고 배경의 색과 모양이 매우 복잡한 경우에 대해서도 제안한 알고리즘이 비교적 정확히 추적을 수행함을 보였다. 아울러 제안한 알고리즘은 추적을 수행하는데 일반 PC에서 약 30fps의 처리 속도를 보여 실시간 시스템에 적합하다.

도심지 급경사지에서 토석류 범람 특성 및 사방댐 기능 (Debris flow characteristics and sabo dam function in urban steep slopes)

  • 김연중;김태우;김동겸;윤종성
    • 한국수자원학회논문집
    • /
    • 제53권8호
    • /
    • pp.627-636
    • /
    • 2020
  • 과거의 토석류 재해는 도시로부터 멀리 떨어진 산지지형에서 주로 발생하여 다른 자연재해 보다 비교적 피해가 적은 재해로 저평가 되었다. 하지만 도시화가 진행됨에 따라 도심속 산지지형에 많은 주거지 및 주요 시설물 등이 건설되면서 많은 환경적 변화와 기후변화에 따른 강우량의 증가로 토사재해의 발생 빈도가 꾸준히 증가 하고 있어 토석류에 대한 위험 리스크가 고조되고 있다. 특히 급경사지로 지정된 지역에서 토석류 범람 특성 및 저감대책에 관한 연구는 아직 미비하다. 따라서 우리나라 환경에 적합한 독자적인 방재 기술을 확보하기 위한 연구와 여러 방재 정보의 업데이트 및 개량이 요구되며 우리나라 지형 특성을 고려할 수 있는 독자적인 기술이 필요하다. 본 연구에서는 우리나라 급경사지로 지정된 지역을 대상으로 방재성능목표에 따른 토사 유출량을 산정하고 그에 따른 독자적인 모델을 개발하여 토석류 영향평가와 피해저감에 탁월한 사방댐의 기능 평가를 목적으로 한다. 사방댐 평가를 위해 개발한 2차원 토석류 모델의 신뢰성 확보를 위해 수리모형실험과의 비교 검증 결과 잘 일치하는 것으로 나타났으며 이 결과로부터 모델의 신뢰성을 확인하였다. 또한, 급경사지 주변의 지역적 특징을 고려하기 위해 평면 2차원 토석류 모델을 구축하여 직접 피해지역에 도달하는 토석류의 흐름 특성을 분석하였고, 피해저감을 위해 설치한 사방댐의 제원(높이) 및 설치장소에 따라 토석류가 하류로 전달되는 흐름 특성을 분석하였다. 특히 사방댐 설치장소가 토석류의 흐름이 발생하는 약 20° 이상의 지역에서는 사방댐의 기능이 현저히 떨어지는 것을 확인하였다.

천리안해양위성 연속자료 구축을 위한 GOCI-II 임무 초기 주요 해색산출물의 GOCI 자료와 비교 분석 (The GOCI-II Early Mission Ocean Color Products in Comparison with the GOCI Toward the Continuity of Chollian Multi-satellite Ocean Color Data)

  • 박명숙;정한철;이선주;안재현;배수정;최종국
    • 대한원격탐사학회지
    • /
    • 제37권5_2호
    • /
    • pp.1281-1293
    • /
    • 2021
  • 최근 GOCI-II 위성이 발사되면서 우리나라는 세계 최초로 약 20년 동안 정지궤도상에 있는 천리안 해양위성 시리즈(GOCI, GOCI-II)를 운용하게 되었다. 본 연구에서는 GOCI-II 주요 해색산출물인 엽록소-a 농도(Chl-a), 유색용존유기물(CDOM), 원격반사도(Rrs)를 GOCI 자료와 비교 분석하여, 위성 임무초기 산출물의 현황을 파악하고 향후 천리안 해양위성 시리즈 데이터 구축을 위한 알고리즘 개선 방향을 논의한다. 2020년 황해, 남해, 울릉분지에서 GOCI-II의 엽록소-a 농도의 공간적인 분포는 GOCI 뿐 아니라 MODIS와도 잘 일치한다(상관계수: 0.83 이상). 특히, 여름철 울릉 분지 영역에서는 GOCI와 GOCI-II 자료의 엽록소-a 농도는 RMSE도 낮으며(~0.08), 편향성(Systematic Bias)도 거의 없었다. 선택된 모든 영역에서 490 nm와 555 nm 원격반사도는 GOCI와 GOCI-II 간 불확도가 낮고, 유사한 경향성이 나타났다. 그러나, 남해와 황해의 443 nm 원격반사도의 경우 GOCI-II가 GOCI에 비해 과소추정하여, 엽록소-a 농도와 유색용존유기물의 과다추정을 유도한다. 또한, 660 nm 원격반사도의 경우에도 systematic bias가 나타나 총부유입자 산출물에 영향을 줄 수 있다. 본 연구는 현재 GOCI-II 자료는 기본적으로 GOCI나 MODIS와 잘 일치하고 있어, 해양환경 관측을 위한 기본적인 신뢰도는 확보되었음을 의미한다. 그러나, 향후 GOCI-II 복사보정, 산출물 검보정, 알고리즘 개선으로 자료의 정량적인 정확도를 개선하는 연구가 반드시 필요하며, 이를 기반으로 20년간 천리안 해양위성자료의 일괄적 재처리로 GOCI, GOCI-II 연속성이 보장된 자료를 제공할 수 있다.

인공신경망을 이용한 N치 예측 (A Prediction of N-value Using Artificial Neural Network)

  • 김광명;박형준;구태훈;김형찬
    • 지질공학
    • /
    • 제30권4호
    • /
    • pp.457-468
    • /
    • 2020
  • 플랜트, 토목 및 건축 사업에서 말뚝(Pile) 설계 시 어려움을 겪는 주된 요인은 지반 특성의 불확실성이다. 특히 표준관입시험(Standard Penetration Test, SPT)을 통해 측정되는 N치를 얻는 것이 가장 중요한 자료이나 광범위한 모든 지역에서 구하는 것은 어려운 현실이다. 짧은 해외사업 입찰기간 내에 시추조사를 할 경우 인허가, 시간, 비용, 장비접근, 민원 등 많은 제약요건이 존재하여 전체적인 시추조사가 어렵다. 미시추 지점에서 지반 특성은 엔지니어의 경험적 판단에 의존하여 파악되고 있고, 이는 말뚝의 설계 및 물량산출 오류로 이어져서, 공기 지연 및 원가 증가의 원인이 되고 있다. 이를 극복하기 위해서, 한정된 최소한의 지반 실측 자료를 활용하여 미시추 지점에서도 N치를 예측 할 수 있는 기술이 요구되며, 본 연구에서는 AI기법 중 하나인 인공신경망을 적용하여 N치를 예측하는 연구를 수행하였다. 인공신경망은 제한된 양의 지반정보와 생물학적인 로직화 과정을 통하여 입력변수에 대한 보다 신뢰성 있는 결과를 제공하여 준다. 본 연구에서는 최소한의 시추자료의 지반정보를 입력항목으로 하여 다층퍼셉트론과 오류역전파 알고리즘에 의하여 학습된 패턴을 가지고 미시추 지점에서 N치를 예측하는데 그 목적을 두고 있다. 이를 위하여 2개 현장(필리핀, 인도네시아)에 AI기법 적용시 실측값과 예측값에 대한 적정성을 검토하였고, 그 결과 예측값에 대한 신뢰도가 높은 것으로 연구 검토되었다.

한반도 모자이크 영상의 토지피복분류 활용 가능성 탐색을 위한 비교 연구 (A Comparative Study on the Possibility of Land Cover Classification of the Mosaic Images on the Korean Peninsula)

  • 문지윤;이광재
    • 대한원격탐사학회지
    • /
    • 제35권6_4호
    • /
    • pp.1319-1326
    • /
    • 2019
  • 한국항공우주연구원은 지속적으로 증가하는 공공분야의 위성영상 수요에 대응하기 위해 정부 위성정보활용협의체를 운영하고 있으며, 사용자 편의성 증진 및 위성영상 활용 활성화를 위해 매년 한반도 모자이크 영상을 제작하여 제공하는 등 다양한 지원사업을 수행하고 있다. 특히 한반도 모자이크 영상의 활용도를 높이고 사용자가 손쉽게 분류 영상을 현업에 활용할 수 있도록 모자이크 영상을 분류 및 갱신하는 방안을 모색하고 자 하였다. 그러나 한반도 모자이크 영상은 영상 융합 및 컬러 밸런싱 등을 적용하기 때문에 분광정보, 즉 색상왜곡이 발생하고 R, G, B 밴드만 보유하고 있다는 한계점이 있기 때문에 모자이크 영상으로 만들어낸 분류 결과가 현업에서 활용될 수 있는 수준인지 확인 및 검증이 필요하다. 따라서 본 연구에서는 모자이크 영상으로 분류를 수행했을 때 그 결과물의 신뢰도를 KOMPSAT-3 영상과 비교하여 확인해보고자 하였다. 연구 결과, KOMPSAT-3 영상의 분류 정확도는 약 81~86%(전체 정확도 약 85%)로 나타난 반면, 모자이크 영상분류 결과의 정확도는 약 69~72%(전체 정확도 약 72%)로 다소 낮게 나타났다. 이러한 현상은 모자이크 영상을 생성하는 과정에서 영상 융합과 모자이크 과정을 거치며 본래의 분광정보가 왜곡되었을 뿐만 아니라, 컬러밴드인 R, G, B 세 가지의 밴드만 제공함에 따라 NDVI나 NDWI 정보를 실제 모자이크 영상이 아닌 KOMPSAT-3 영상에서 추출하였기 때문으로 해석된다. 비록 현재로서는 모자이크 영상으로 토지피복분류를 수행하여 사용자에게 배포하기에는 무리가 있을 것으로 판단되나, 추후 모자이크 영상을 제작할 때 분광정보 왜곡을 최소화할 수 있는 방법을 모색하고 R, G, B 밴드뿐만 아니라 NIR 밴드도 함께 제공하거나 모자이크 영상에 적합한 영상분류 기술을 개발할 필요가 있을 것으로 생각된다. 또한 지형특성별 분류결과 비교분석과 관심객체별 기계학습 등을 통한 영상분류 방법을 개발하는 등 관련 연구를 지속한다면, 추후 분광정보가 제한된 영상들도 활용도가 높아질 수 있을 것으로 기대된다.