• Title/Summary/Keyword: Up-converter

Search Result 745, Processing Time 0.022 seconds

Design and Implementation of Up-converter for WCDMA Digital Optic Repeater (WCDMA 디지털 광 중계기용 Up-converter 설계 및 제작)

  • 최영선;강원구;장인봉
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.586-589
    • /
    • 2003
  • Repeater is developed. Based on the systems The up-converter of the WCDMA Digital Optic pecifications, the structure of the up-converter is accomplished and its block diagram is drawn. The up-converter is implemented according to these block diagrams. Subsequently the low pass filter, the automatic level controlled attenuator, the frequency synthesizer and other components for the up-converter are designed and implemented, and a main board to integrate these modules is also manufactured. To reduce the noise floor of system and suppress the RF spurious noise, a PCB layout is performed carefully. For each module consisting of the up-converter and the entire system, the performance tests are accomplished to check the performance about the specifications.

  • PDF

Single-Ended High-Efficiency Step-up Converter Using the Isolated Switched-Capacitor Cell

  • Kim, Do-Hyun;Jang, Jong-Ho;Park, Joung-Hu;Kim, Jung-Won
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.766-778
    • /
    • 2013
  • The depletion of natural resources and renewable energy sources, such as photovoltaic (PV) energy, has been highlighted for global energy solution. The PV power control unit in the PV power-generation technology requires a high step-up DC-DC converter. The conventional step-up DC-DC converter has low efficiency and limited step-up ratio. To overcome these problems, a novel high step-up DC-DC converter using an isolated switched capacitor cell is proposed. The step-up converter uses the proposed transformer and employs the switched-capacitor cell to enable integration with the boost inductor. The output of the boost converter and isolated switched-capacitor cell are connected in series to obtain high step-up with low turn-on ratio. A hardware prototype with 30 V to 40 V input voltage and 340 V output voltage is implemented to verify the performance of the proposed converter. As an extended version, another novel high step-up isolated switched-capacitor single-ended DC-DC converter integrated with a tapped-inductor (TI) boost converter is proposed. The TI boost converter and isolated-switched-capacitor outputs are connected in series to achieve high step-up. All magnetic components are integrated in a single magnetic core to lower costs. A prototype hardware with 20 V to 40 V input voltage, 340 V output voltage, and 100 W output power is implemented to verify the performance of the proposed converter.

A Three-Phase AC-DC High Step-up Converter for Microscale Wind-power Generation Systems

  • Yang, Lung-Sheng;Lin, Chia-Ching;Chang, En-Chih
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1861-1868
    • /
    • 2016
  • In this paper, a three-phase AC-DC high step-up converter is developed for application to microscale wind-power generation systems. Such an AC-DC boost converter prossessess the property of the single-switch high step-up DC-DC structure. For power factor correction, the advanced half-stage converter is operated under the discontinuous conduction mode (DCM). Simulatanously, to achieve a high step-up voltage gain, the back half-stage functions in the continuous conduction mode (CCM). A high voltage gain can be obtained by use of an output-capacitor mass and a coupled inductor. Compared to the output voltage, the voltage stress is decreased on the switch. To lessen the conducting losses, a low rated voltage and small conductive resistance MOSFETs are adopted. In addition, the coupled inductor retrieves the leakage-inductor energy. The operation principle and steady-state behavior are analyzed, and a prototype hardware circuit is realized to verify the performance of the proposed converter.

Symmetrical Cockcroft-Walton circuit for Transformerless High Step-Up DC-DC Converter (변압기 없는 고승압 직류 컨버터용 대칭형 Cockcroft-Walton 회로)

  • Cha, Dae-Joong;Baek, Ji-Eun;Ko, Kwang-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.8
    • /
    • pp.70-75
    • /
    • 2015
  • High Step-up DC-DC Converters have been demanded for renewable energy applications. Transformer or coupled inductor is generally used to boost output voltage of converters. This methods can relatively obtain high voltage than others, whereas have heavy weight and high cost. To complement these disadvantages, we studied transformerless high step-up DC-DC converter. In various transformerless topologies, Boost converters combined with Cockcroft-Walton have studied. In this paper, we proposed a symmetrical Cockcroft-Walton circuit for transformerless high step-up DC-DC converter. Finally, we simulated proposed converter to compare with existing converter. As a result, proposed converter has higher duty ratio or lower cost than existing transformerless converters which are discussed in this paper.

Analysis and Implementation of a DC-DC Converter for Hybrid Power Supplies Systems

  • Yang, Lung-Sheng;Lin, Chia-Ching
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1438-1445
    • /
    • 2015
  • A new DC-DC power converter is researched for renewable energy and battery hybrid power supplies systems in this paper. At the charging mode, a renewable energy source provides energy to charge a battery via the proposed converter. The operating principle of the proposed converter is the same as the conventional DC-DC buck converter. At the discharging mode, the battery releases its energy to the DC bus via the proposed converter. The proposed converter is a non-isolated high step-up DC-DC converter. The coupled-inductor technique is used to achieve a high step-up voltage gain by adjusting the turns ratio. Moreover, the leakage-inductor energies of the primary and secondary windings can be recycled. Thus, the conversion efficiency can be improved. Therefore, only one power converter is utilized at the charging or discharging modes. Finally, a prototype circuit is implemented to verify the performance of the proposed converter.

A High-Efficiency High-Power Step-Up Converter with Low Ripple Content

  • Kang Jeong-il;Roh Chung-Wook;Moon Gun-Woo;Youn Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.708-712
    • /
    • 2001
  • A new phase-shifted parallel-input/series-output (PI SO) dual inductor-fed push-pull converter for high-power step­up applications is proposed. This converter is operated at a constant duty cycle and employs an auxiliary circuit to control the output voltage with a phase-shift between the two modules. It features a voltage conversion characteristic which is linear to changes in the control input, and high step-up ratio with a greatly reduced switch turn-off stress resulting in a significant increase in the converter efficiency. It also shows a low ripple content and low root-mean-square (RMS) current in the output capacitor. The operational principle is analyzed and a comparative analysis with the conventional pulse-width-modulated (PWM) PISO dual inductor-fed push-pull converter is presented. A 50kHz, 800W, 350Vdc prototype with an input of 20-32Vdc has also been constructed to validate the proposed converter. The proposed converter compares favorably with the conventional counterpart and is considered well suited to high-power step-up applications.

  • PDF

A new interleaved high step up converter with low voltage stress on the main switches

  • Tohidi, Babak;Delshad, Majid;Saghafi, Hadi
    • Smart Structures and Systems
    • /
    • v.26 no.4
    • /
    • pp.521-531
    • /
    • 2020
  • In this paper, a new interleaved high step-up converter with low voltage stress on the switches is proposed. In the proposed converter, soft switching is provided for all switches by just one auxiliary switch, which decreases the conduction loss of auxiliary circuit. Also, the auxiliary circuit is expanded on the converter with more input branches. In the converter all main switches operate under zero voltage switching condition and auxiliary switch operate under zero current switching condition. Because of the interleaved structure, the reliability of converter increases and input current ripples decreases. The clamp capacitor in the converter not only absorb the voltage spikes across the switch due to leakage inductance, but also improve voltage gain. The proposed converter is fully analyzed and to verify the theoretical analysis, a 100 W prototype was implemented. Also, to show the effectiveness of auxiliary circuit on conduction EMI, EMI of the proposed converter comprised with hard switching counterpart.

Design and Implementation of a Up Down Converter for Asynchronous IMT-2000 Base Station (비동기식 IMT-2000 기지국용 Up Down Converter 설계 및 제작)

  • 손병일;전석찬;방성일
    • Proceedings of the IEEK Conference
    • /
    • 2000.06a
    • /
    • pp.61-64
    • /
    • 2000
  • In this paper, we design up-down converter for asynchronous IMT-2000 base station using W-CDMA(Wideband Code Division Multiple Access) technology. This up-down converter(UDC) has AGC (Automatic Gain Control), TPTL(Transmitting Power Tracing Loop), RSSI(Received Signal Strength Indicator) function. And for the cell control of BS(Base Station), breathing, blossoming, wilting function also available. This UDC has diversity structure for better performance.

  • PDF

A Study on the Step-up PWM Cycloconverter (승압형 PWM 싸이크로 콘버터에 관한 연구)

  • 박민호;홍순찬;김기택
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.6
    • /
    • pp.431-440
    • /
    • 1989
  • This paper proposes a new PWM cycloconverter which can step up input voltage. With input reactors ac power supply acts as current source, and with output capacitors the balanced output voltage is build-up. The converter is modeled with fourth order state equation using dq transformation and the steady state characteristics are evaluated. It is shown that the proposed converter can generate the output voltage 2-5 times greater than input voltage. The output voltage and input current have sinusoidal and smooth waveforms and the converter is capable of voltage build-up. The characteristics of the proposed converter is verified simulation and experiment.

  • PDF

A High-Power Step-up Converter with High Efficiency and Fast Control-to-Output Dynamics

  • Kang, Jeong-il;Roh, Chung-Wook;Moon, Gun-Woo;Youn, Myung-Joong
    • Journal of Power Electronics
    • /
    • v.1 no.2
    • /
    • pp.78-87
    • /
    • 2001
  • A new high-power step-up based on the two-module parallel-input (PISO) modular dual inductor-fed push-pull converter is proposed. The proposed converter is operated at a constant duty cycle and employs and auxiliary circuit to control the output voltage with a phase-shift between two modules. It shows a high efficiency due to the greatly reduced switch turn-off stress. It also shows a high and linear voltage conversion ratio, low current stress in the output capacitor, and fast control-to-output dynamics. The operation principles and the mathematical models of the proposed converter are presented. Features of the proposed converter are discussed in comparison with the two-module PISO modular dual inductor-fed push-pull converter. Also, experimental results from a 50kHz, 800W, 350 Vdc prototype with an input voltage range of 20-32 Vdc are provided to confirm the validity of the proposed converter. The new converter compares favorably with the conventional counterpart, and is considered well siuted to high-power step-up applications.

  • PDF