• Title/Summary/Keyword: Up end milling

Search Result 62, Processing Time 0.022 seconds

Experimental verification of shear and frictional characteristics in end milling (엔드밀링시 전단 및 마찰 특성의 실험적 검증)

  • Lee, Y. M.;S. H. Yang;M. Chen;S. I. Jang
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1789-1794
    • /
    • 2003
  • As a new approach to analyze shear behaviors in the shear plane and chip-tool friction behaviors in the chip-tool contact region during an end milling process, this paper introduces a method to transform an end milling process to an equivalent oblique cutting process. In this approach, varying undeformed chip thicknesses and cutting forces in the up-and down-end milling process are replaced with the equivalent ones of oblique cutting. Accordingly, in the current paper, the shear and friction characteristics of end milling operations, up- and down-end milling, have been analyzed based on the equivalent oblique cutting models. Two series of cutting tests, up- and down-end milling tests and the equivalent oblique cutting tests to that, have been carried out to verify the validity of the analyses. And using the results of cutting tests the cutting characteristics of the up- and down-end milling processes have been thoroughly investigated.

  • PDF

Analysis of Shear and Friction chacteristics in End milling with variable cutting condition (Part 1 Up-end milling) (절삭조건에 따른 엔드밀링 가공시 전단 및 마찰 특성 분석(1. 상향 엔드밀링))

  • Lee, Young-Moon;Yang, Seung-Han;Ming Chen;Jang, Seung-Il
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.223-228
    • /
    • 2003
  • In end milling processes, characterized by use of rotating tools, the underformed chip thickness varies periodically with the phase change of tool. In current study, as a new approach to analyse shear behaviors In the shear plane and chip-tool friction behavior chip-tool contact region during an end milling process. In this approach, an up-end milling process is transformed into an equivalent oblique cutting process. Experimental investigations for two sets of cutting tests i.e.. up-end milling and the equivalent oblique cutting test were performed to verify the presented model.

  • PDF

Improvement of the Accuracy in Machining Deep Pocket by Up Milling (상향절삭에 의한 깊은 홈 가공시 정밀도 향상에 대한 연구)

  • Lee, Sang-Kyu;Ko, Sung-Lim
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.220-228
    • /
    • 1999
  • The machining accuracy has been improved with the development of NC machine tools and cutting tools. However, it is difficult to obtain a high degree of accuracy when machining deep pocket with long end mill, since machining accuracy is mainly dependant on the stiffness of the cutting tool. To improve surface accuracy in machining deep pocket using end mill, the performance by down cut and up cut is compared theoretically and experimentally. To verify usefulness of up milling, various experiments were carried out. As a result, it is found that up milling produce more accurate surface than down milling in machining deep pocket. For effective application of up milling, various values in helix angle, number of teeth, radial depth of cut and axial depth of cut are applied in experiment.

  • PDF

The Shear and Friction characteristics Analysis of Inconel 718 End-millingIusing Equivalent Oblique Cutting System -Up endmilling- (등가경사절삭 시스템에 의한 Inconel 718 앤드밀링 공정의 전단 및 마찰특성 해석I -상향 엔드밀링-)

  • 이영문;최원식;송태성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.887-890
    • /
    • 2001
  • In end milling process the underformed chip thickness and the cutting force components very periodically with phase change of the tool. In this study, up end milling process is transformed to the equivalent oblique cutting. The varying underformed chip thickness and the cutting force components in end milling process are replaced with the equivalent average ones. Then it can be possible to analyze the chip-tool friction and shear process in the shear plane of the end milling process by the equivalent oblique cutting mode. According to this analysis, when cutting Inconel 718.61% of the total energy is consumed in the shear process and the balance is consumed in the friction process.

  • PDF

Analysis of the Up End Milling Process by Transforming to the Equivalent Oblique Cutting Model (경사절삭 모델에 의한 상향 엔드밀링절삭 해석)

  • 이영문;송태성;심보경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.902-906
    • /
    • 2000
  • In end milling process the undeformed chip thickness and the cutting force components vary periodically with phase change of the tool. In this study, up end milling process is transformed to the equivalent oblique cutting. The varying undeformed chip thickness and the cutting force components in end milling process are replaced with the equivalent average ones. Then it can be possible to analyze the chip-tool friction and shear process in the shear plane of the end milling process by the equivalent oblique cutting model. According to this analysis, when cutting SM45C steel. 82% of the total energy is consumed in the shear process and the balance is consumed in the friction process.

  • PDF

Cutting Characteristics in Down-End Milling with Different Helix Angles (하향엔드밀링시 헬릭스각에 따른 절삭특성변화)

  • 이영문;장승일;서민교
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.77-82
    • /
    • 2003
  • In end milling process, undeformed chip thickness and cutting force vary periodically with phase change of the tool. Recently, a model has been proposed to simulate the shear and friction characteristics of an up-end milling process in terms of the equivalent oblique cutting to this. In the current study, the varying undeformed chip thickness and the cutting forces in a down-end milling process have been replaced with the equivalent ones of oblique cutting. And, the down-end milling characteristics of SM45C has been compared with that of the up-end milling previously presented with different helix angles.

  • PDF

The Shear and Friction characteristics Analysis of End-milling (엔드밀링의 전단특성 및 마찰특성 해석)

  • Lee, Y.M.;Song, T.S.;Shim, B.K.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.724-729
    • /
    • 2000
  • In end milling process the undeformed chip thickness and the cutting force components vary periodically with phase change of the tool. In this study, up end milling process is transformed to the equivalent oblique cutting. The varying undeformed chip thickness and the cutting force components in end milling process are replaced with the equivalent average ones. Then it can be possible to analyze the chip-tool friction and shear process in the shear plane of the end milling process by the equivalent oblique cutting model. According to this analysis, when cutting SM45C steel, 72% of the total energy is consumed in the shear process and the balance is consumed in the friction process.

  • PDF

The Shear and Friction Characteristics Analysis of End-Milling (엔드밀링의 전단특성 및 마찰특성 해석)

  • Lee, Yeong-Mun;Song, Tae-Seong;Sim, Bo-Gyeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1520-1527
    • /
    • 2001
  • In end milling process the undeformed chip thickness and the cutting force components vary periodically with phase change of the tool. In this study, up end milling process is transformed to the equivalent oblique cutting. The varying undeformed chip thickness and the cutting force components in end milling process are replaced with the equivalent average ones. Then it can be possible to analyze the chip-tool friction and shear process in the shear plane of the end milling process by the equivalent oblique cutting model. According to this analysis, when cutting SM45C steel, 72% of the total energy is consumed in the shear process and the balance is consumed in the friction process.

Cutting Characteristics Variation of Inconel 718 in End Milling with different Helix Angles -(I) Up End Milling (인코넬 718의 엔드밀링시 헬릭스각에 따른 절삭특성 변화 -(I) 상향엔드밀링)

  • 태원익;이선호;최원식;양승한;이영문
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.947-950
    • /
    • 2000
  • The purpose of this paper is to investigate the effect of the helix angle of endmilling cutter on the cutting characteristics of inconel 718 in up endmilling. To this end cutters with helix angle of $20^\circ$, $30^\circ$, $40^\circ$ and $50^\circ$ degree have been prepared. And a modified cutting force model in up end milling process is presented. Using this cutting force components of 4-tooth endmills with various helix angles have been predicted. Predicted values of cutting force components are well coincide with the measured ones. As helix angle increases overlapping effects of the active cutting edges increase.

  • PDF

Prediction of Cutting Force in Up end Milling (엔드밀의 상향절삭시 절삭력 예측)

  • 이영문
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.3-7
    • /
    • 2000
  • In this study, a modified model for prediction of cutting force components in up end milling process is presented. Using this cutting force components of 4-tooth endmils with various helix angles have been predicted. Predicted value of cutting force components are well coincide with the measured ones. As helix angle increases overlapping effects of the active cutting edges increase and as a result the amplitudes of cutting force components decrease and the specific cutting energy consumed also decreases

  • PDF