• 제목/요약/키워드: Up End Milling

검색결과 62건 처리시간 0.024초

커터 런 아웃과 가공표면 생성에 관한 연구 (A Study on the Charactistics of Machined Surface due to Cutter Runout)

  • 황준;이기용;신승춘;정의식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.873-877
    • /
    • 1997
  • This paper presents experimental results to know the charcteristics of machined surface due to cutter runout. Cutter runout is a common but undesirable phenomenon in multi-tooth machining such as end-milling process because it introduces variable chip loading to insert which results in a accelerated tool wear, amplification of force variation and hence enargement vibration amplitude. To develop in-proess cutter runout compensation system, set-up the micro-positoning mechanism which is based on piezoelectric translator embeded in the work holder to manipulate the depth of cut in real-time. And feasibility test of system was done under the various experimental cutting conditions. This results provide lots of information to build-up the precision machining technology.

  • PDF

밀링가공시 절삭력의 시뮬레이션에 관한 연구 (A Study on the Cutting Force Simulation for Ball-end milling Operation)

  • 홍민성;김종민
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.184-189
    • /
    • 2003
  • In metal cutting operation, it is very important that predict cutting force and work surface. Vibration is an unstable cutting phenomenon which is due to the interaction of the dynamics of the chip removal process and the structural dynamics of machine tool. when Vibration occurs, it reduces tool life, results in poor surface roughness and low productivity of the machining process. In this study, the experiments were conducted in machining center without cutting fluid to investigated phenomenon of the Vibration. In the experiments, accelerometers were set up at the tail stock and tool holder and the signals were picked up. In this paper, surface roughness profiles will be generated under the ideal condition and the occurrence of the vibration based on the surface shaping simulation model.

  • PDF

인코넬 718의 상향 및 하향 엔드밀링시 헬릭스각에 따른 절삭력 변화 (Cutting Force Variation of Inconel 718 in Up and Down Endmilling with Different Helix Angles.)

  • 이영문;이선호;태원익;권오진;최봉환
    • 한국정밀공학회지
    • /
    • 제18권7호
    • /
    • pp.143-148
    • /
    • 2001
  • In this study, a mechanistic model of cutting force components in up and down end milling process is presented. Using this cutting force model of 4-tooth endmills with various helix angles, cutting force variation of inconel 718 has been predicted. Predicted values of cutting force components are coincide well with the measured ones. As helix angle increases, overlapping effects of the active cutting edges increase. In up endmilling the magnitudes of radial and feed cutting force componts FX and FY are lowest when the helix angle is $40\{\circ}$, but in down endmilling the magnitudes of these values increase slightly as helix angle becomes large.

  • PDF

소형 앵글 스핀들 공구의 절삭성능에 관한 연구 (Cutting Performance of a Developed Small-angle Spindle Tool)

  • 김진수;김용조
    • 한국기계가공학회지
    • /
    • 제15권2호
    • /
    • pp.111-117
    • /
    • 2016
  • The cutting performance of a developed small-angle spindle tool was investigated with Al6061 using a TiAlN coated high-speed steel end mill. Up-cut and down-cut processes in a milling machine were carried out at the range of 1000-4000 rpm for spindle speed and 50-300 mm/min for feed rate. As a result, the highest cutting force in the Fx direction was obtained from the up-cut process when the spindle speed was 1000 rpm and the feed rate was 100 mm/min. In the Fy direction, the highest cutting force appeared in the up-cut process at a feed rate of 250 mm/min at the same spindle speed. Conversely, the lowest cutting force came out in the up-cut process at a spindle speed of 4000 rpm and a feed rate of 50 mm/min. As for surface finish, the finest surface roughness was obtained as Ra 0.7642 um at a spindle speed of 4000 rpm and a feed rate of 50 mm/min. Consequently, given the cutting performance of the developed small-angle spindle tool, we conclude that its use in industrial practice is feasible.

드릴, 보링 공정복합형 스텝 커터의 개발 (A Study on the Development of a Step Cutter with Hybrid Process of Drilling and Boring)

  • 황종대;허윤녕;오지영;정윤교;조성림
    • 한국기계가공학회지
    • /
    • 제7권3호
    • /
    • pp.30-35
    • /
    • 2008
  • As demands for being economical, precise drilling process is on the increase. Therefore, the objective of this study is to develop a step cutter that can be controllable through micro dimension and can be changed from separate manufacturing processes of drilling and boring into an integrated one. In order to attain this object the step cutter is designed with a 3D geometric modeling and the design could be modified easily by using parametric modeling methodology. Also, collision is not occurred during manufacturing process because of cutting simulation. The step cutter is assembled by parts made up of 5-axis machining and sintering. Validation tests are accomplished. They show that developed cutter has characteristics such as reduction of machining time as well as the good surface roughness of the machined hole. Indeed, reliability could be obtained from a durability test.

  • PDF

접촉식 측정시스템에 의한 공작물의 자동인식 및 오차보상

  • 신동수;정성종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1991년도 추계학술대회 논문집
    • /
    • pp.121-125
    • /
    • 1991
  • In order to minimize fixing error of workpieces, prismatic and cylindrical types. Modification Rule by Indexing Table and Modification Rule by NC Program are developed for machining centers by using touch trigger probes. The Modification Rule by Indexing Table means the alignment of workpiece to NC program through degree of freedoms of indexing table. The Modification Rule by NC Program is the alignment of NC program to workpiece set-up condition via the generation of NC program. A postprocessing module is also developed for generating NC-part Program (User Macro) to compensate for Machining errors in end milling and boring processes. Developed methods are verified by experiments.

  • PDF

반복학습제어를 이용한 커터 런아웃 보상에 관한 연구 (A Study on the Cutter Runout In-Process Compensation Using Repetitive Loaming Control)

  • 황준;정의식;황덕철
    • 한국정밀공학회지
    • /
    • 제19권3호
    • /
    • pp.137-143
    • /
    • 2002
  • This paper presents the In-process compensation to control cutter runout and improve the machined surface quality. Cutter runout compensation system consists of the micro-positioning servo system with piezoelectric actuator which is embeded in the sliding table to manipulate radial depth of cut in real-time. Cutting force feedback control was proposed in the angle domain based upon repetitive learning control strategy to eliminate chip load variation in end milling process. Micro-positioning control due to adaptive actuation force response improves the machined surface quality by compensation runout effect induced cutting force variation. This result will provide lots of information to build-up the preciswion machining technology.

최적 절삭 조건을 고려한 절삭공구 선정 프로그램 개발 (Development of Tool and Optimal Cutting Condition Selection Program)

  • 신동오;김영진;고성림
    • 대한산업공학회지
    • /
    • 제26권2호
    • /
    • pp.165-170
    • /
    • 2000
  • In order to perform a successful material cutting process, the operators are to select the suitable machining tools and cutting conditions for the cutting environment. Up to now, this has been a complicated procedure done by the data in the tool manufacturers' paper catalog and the operator's experiencial knowledge, so called heuristics. This research is motivated by the fact that using computer techniques in processing vast amount of data and information, the operator can determine the tool and cutting condition easily. In the developed program, the selection of milling cutter, insert, and components are combined to provide optimal cutting speed, depth of cut, feed rate, rpm, and power. This program also provides the selection routine for end mill, drilling, turning, and grinding where the suitable tools are selected by workpiece, holder type, cut type, and insert shape.

  • PDF

볼엔드밀 경사면 가공에서 절삭력 맵을 이용한 평균절삭력 예측 (Mean Cutting Force Prediction in Ball-End Milling of Slanted Surface Using Force Map)

  • 김규만;주종남
    • 한국정밀공학회지
    • /
    • 제15권12호
    • /
    • pp.212-219
    • /
    • 1998
  • During machining of dies and molds with sculptured surfaces. the cutter contact area changes continuously and results in cutting force variation. In order to implement cutting force prediction model into a CAM system, an effective and fast method is necessary. In this paper. a new method is proposed to predict mean cutting force. The cutter contact area in the spherical part of the cutter is obtained using Z-map, and expressed by the grids on the cutter plane orthogonal to the cutter axis. New empirical cutting parameters were defined to describe the cutting force in the spherical part of cutter. Before the mean cutting force calculation, the cutting force density in each grid is calculated and saved to force map on the cutter plane. The mean cutting force in an arbitrary cutter contact area can be easily calculated by summing up the cutting force density of the engaged grid of the force map. The proposed method was verifed through the slotting and slanted surface machining with various inclination angles. It was shown that the mean force can be calculated fast and effectively through the proposed method for any geometry including sculptured surfaces with cusp marks and holes.

  • PDF

옥수수의 품질평가 현황과 전망 (Current Status and Prospect of Qauality Evaluation in Maize)

  • 김선림;문현귀;류용환
    • 한국작물학회지
    • /
    • 제47권
    • /
    • pp.107-123
    • /
    • 2002
  • This paper is intented to present a information of various aspects of quality related characteristics and standards for grades in maize. Maize is world's one of the three most popular cereal crops and a primary energy supplement and can contribute up to 30, 60, and 98% of the dairy diet's protein, net energy, and starch, respectively. Maize is also processed into industrial goods by wet or dry milling. Sweet corn is a leader among vegetable crops and its production for fresh or processing markets is a major industry in many countries. Over the years, the combined efforts of breeders and geneticists, biochemists, food scientists, and others have helped bring us to the point where we understand issues related to sweet corn quality. Traditional criteria for selecting corn hybrids have been based primarily on agronomic factors, including grain production, disease resistance, drought tolerance, and storage characteristics. Little emphasis has been placed on the quality and nutritional values of corn. Although there is widespread interest for value-enhanced corns have increased tremendously in the last five years, there is limited information available on the production and comparing the quality attributes of specialty grains with those of normal yellow dent corn. Most countries have developed national maize standards, aiming to provide a framework for trade, both internal and external. Where trading involves direct choice and price negotiation in front of the commodity, grading standards are rarely employed; quality is assessed visually and is influenced by end-use, and the price is determined more by local rather than national factors. The use of an agreed standard will provide an unambiguous description of the quality of the consignment and assist in the formation of a legally-binding contract. Standards can also be seen to protect consumers rights through setting limits to the amount of unsuitable or noxious material.