• Title/Summary/Keyword: Unsupervised machine learning.

Search Result 139, Processing Time 0.028 seconds

Impurity profiling and chemometric analysis of methamphetamine seizures in Korea

  • Shin, Dong Won;Ko, Beom Jun;Cheong, Jae Chul;Lee, Wonho;Kim, Suhkmann;Kim, Jin Young
    • Analytical Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.98-107
    • /
    • 2020
  • Methamphetamine (MA) is currently the most abused illicit drug in Korea. MA is produced by chemical synthesis, and the final target drug that is produced contains small amounts of the precursor chemicals, intermediates, and by-products. To identify and quantify these trace compounds in MA seizures, a practical and feasible approach for conducting chromatographic fingerprinting with a suite of traditional chemometric methods and recently introduced machine learning approaches was examined. This was achieved using gas chromatography (GC) coupled with a flame ionization detector (FID) and mass spectrometry (MS). Following appropriate examination of all the peaks in 71 samples, 166 impurities were selected as the characteristic components. Unsupervised (principal component analysis (PCA), hierarchical cluster analysis (HCA), and K-means clustering) and supervised (partial least squares-discriminant analysis (PLS-DA), orthogonal partial least squares-discriminant analysis (OPLS-DA), support vector machines (SVM), and deep neural network (DNN) with Keras) chemometric techniques were employed for classifying the 71 MA seizures. The results of the PCA, HCA, K-means clustering, PLS-DA, OPLS-DA, SVM, and DNN methods for quality evaluation were in good agreement. However, the tested MA seizures possessed distinct features, such as chirality, cutting agents, and boiling points. The study indicated that the established qualitative and semi-quantitative methods will be practical and useful analytical tools for characterizing trace compounds in illicit MA seizures. Moreover, they will provide a statistical basis for identifying the synthesis route, sources of supply, trafficking routes, and connections between seizures, which will support drug law enforcement agencies in their effort to eliminate organized MA crime.

Efficient Data Clustering using Fast Choice for Number of Clusters (빠른 클러스터 개수 선정을 통한 효율적인 데이터 클러스터링 방법)

  • Kim, Sung-Soo;Kang, Bum-Su
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.2
    • /
    • pp.1-8
    • /
    • 2018
  • K-means algorithm is one of the most popular and widely used clustering method because it is easy to implement and very efficient. However, this method has the limitation to be used with fixed number of clusters because of only considering the intra-cluster distance to evaluate the data clustering solutions. Silhouette is useful and stable valid index to decide the data clustering solution with number of clusters to consider the intra and inter cluster distance for unsupervised data. However, this valid index has high computational burden because of considering quality measure for each data object. The objective of this paper is to propose the fast and simple speed-up method to overcome this limitation to use silhouette for the effective large-scale data clustering. In the first step, the proposed method calculates and saves the distance for each data once. In the second step, this distance matrix is used to calculate the relative distance rate ($V_j$) of each data j and this rate is used to choose the suitable number of clusters without much computation time. In the third step, the proposed efficient heuristic algorithm (Group search optimization, GSO, in this paper) can search the global optimum with saving computational capacity with good initial solutions using $V_j$ probabilistically for the data clustering. The performance of our proposed method is validated to save significantly computation time against the original silhouette only using Ruspini, Iris, Wine and Breast cancer in UCI machine learning repository datasets by experiment and analysis. Especially, the performance of our proposed method is much better than previous method for the larger size of data.

Near Realtime Packet Classification & Handling Mechanism for Visualized Security Management in Cloud Environments (클라우드 환경에서 보안 가시성 확보를 위한 자동화된 패킷 분류 및 처리기법)

  • Ahn, Myong-ho;Ryoo, Mi-hyeon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.331-337
    • /
    • 2014
  • Paradigm shift to cloud computing has increased the importance of security. Even though public cloud computing providers such as Amazon, already provides security related service like firewall and identity management services, it is not suitable to protect data in cloud environments. Because in public cloud computing environments do not allow to use client's own security solution nor equipments. In this environments, user are supposed to do something to enhance security by their hands, so the needs of visualized security management arises. To implement visualized security management, developing near realtime data handling & packet classification mechanisms are crucial. The key technical challenges in packet classification is how to classify packet in the manner of unsupervised way without human interactions. To achieve the goal, this paper presents automated packet classification mechanism based on naive-bayesian and packet Chunking techniques, which can identify signature and does machine learning by itself without human intervention.

  • PDF

Multivariate Outlier Removing for the Risk Prediction of Gas Leakage based Methane Gas (메탄 가스 기반 가스 누출 위험 예측을 위한 다변량 특이치 제거)

  • Dashdondov, Khongorzul;Kim, Mi-Hye
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.12
    • /
    • pp.23-30
    • /
    • 2020
  • In this study, the relationship between natural gas (NG) data and gas-related environmental elements was performed using machine learning algorithms to predict the level of gas leakage risk without directly measuring gas leakage data. The study was based on open data provided by the server using the IoT-based remote control Picarro gas sensor specification. The naturel gas leaks into the air, it is a big problem for air pollution, environment and the health. The proposed method is multivariate outlier removing method based Random Forest (RF) classification for predicting risk of NG leak. After, unsupervised k-means clustering, the experimental dataset has done imbalanced data. Therefore, we focusing our proposed models can predict medium and high risk so best. In this case, we compared the receiver operating characteristic (ROC) curve, accuracy, area under the ROC curve (AUC), and mean standard error (MSE) for each classification model. As a result of our experiments, the evaluation measurements include accuracy, area under the ROC curve (AUC), and MSE; 99.71%, 99.57%, and 0.0016 for MOL_RF respectively.

Classification of hysteretic loop feature for runoff generation through a unsupervised machine learning algorithm (비지도 기계학습을 통한 유출 발생 내 이력 현상 구분)

  • Lee, Eunhyung;Jeon, Hangtak;Kim, Dahong;Friday, Bassey Bassey;Kim, Sanghyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.360-360
    • /
    • 2022
  • 토양수분과 유출 간 관계를 정량화하는 것은 수문 기작 및 유출 발생 과정의 이해를 위한 중요한 정보를 제공한다. 특히, 유출과정의 특성화는 수문 사상에 따른 불포화대 내 토양수 및 토사 손실 제어와 산사태 및 비점오염원 발생 예측을 위해 필수적이다. 유출과정과 관련된 비선형성과 복잡성을 확인하기 위해 토양수분과 유출 사이의 이력 거동이 조사되었다. 특히, 수문 과정 내 이력 현상 구체화를 위해 정성적인 시각적 분류 및 정량적 평가를 위한 이력 지수들이 개발되었다. 정성적인 시각적 분류는 시간에 따라 시계 및 반시계방향으로 다중 루프 형상을 나누는 방식으로 진행되었고, 정량적 평가의 경우 이력 고리(Hysteretic loop) 내 상승 고리(Rising limb)와 하강 고리(Falling limb)의 차이를 기준으로 한 지수로 이력 현상을 특성화하였다. 이전에 제안된 방법론들은 연구자의 판단이 들어가기 때문에 보편적이지 않고 이력 현상을 개발된 지수에 맞춤에 따라 자료 손실이 나타나는 한계가 존재한다. 자료의 손실 없이 불포화대 내 발생 가능한 대표 이력 현상을 자동으로 추출하기 위해 적합한 비지도 학습기반 기계학습 방법론의 제안이 필요하다. 우리 연구에서는 국내 산지 사면에서 강우 사상 동안 다중 깊이(10, 30, 60cm)로 56개의 토양수분 측정지점에서 확보된 토양수분 시계열 자료와 산지 사면 내 위어를 통해 확보된 유출 시계열 자료를 사용하였다. 먼저, 기존에 분류 방법을 기반으로 계절 및 공간특성에 따라 지배적으로 발생하는 토양수분-유출 간 이력 현상을 특성화하였다. 다음으로, 토양수분-유출 간 이력 패턴을 자료 손실 없이 형상화하여 자동으로 데이터베이스화하는 알고리즘을 개발하였다. 마지막으로, 비지도 학습방법을 이용하여 데이터베이스화된 실제 발현 이력 현상 내 확률분포를 최대한 가깝게 추정하는 은닉층을 반복적인 재구성 학습을 통해 구현함으로써 대표 이력 현상 패턴을 추출하였다.

  • PDF

A Hybrid Forecasting Framework based on Case-based Reasoning and Artificial Neural Network (사례기반 추론기법과 인공신경망을 이용한 서비스 수요예측 프레임워크)

  • Hwang, Yousub
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.43-57
    • /
    • 2012
  • To enhance the competitive advantage in a constantly changing business environment, an enterprise management must make the right decision in many business activities based on both internal and external information. Thus, providing accurate information plays a prominent role in management's decision making. Intuitively, historical data can provide a feasible estimate through the forecasting models. Therefore, if the service department can estimate the service quantity for the next period, the service department can then effectively control the inventory of service related resources such as human, parts, and other facilities. In addition, the production department can make load map for improving its product quality. Therefore, obtaining an accurate service forecast most likely appears to be critical to manufacturing companies. Numerous investigations addressing this problem have generally employed statistical methods, such as regression or autoregressive and moving average simulation. However, these methods are only efficient for data with are seasonal or cyclical. If the data are influenced by the special characteristics of product, they are not feasible. In our research, we propose a forecasting framework that predicts service demand of manufacturing organization by combining Case-based reasoning (CBR) and leveraging an unsupervised artificial neural network based clustering analysis (i.e., Self-Organizing Maps; SOM). We believe that this is one of the first attempts at applying unsupervised artificial neural network-based machine-learning techniques in the service forecasting domain. Our proposed approach has several appealing features : (1) We applied CBR and SOM in a new forecasting domain such as service demand forecasting. (2) We proposed our combined approach between CBR and SOM in order to overcome limitations of traditional statistical forecasting methods and We have developed a service forecasting tool based on the proposed approach using an unsupervised artificial neural network and Case-based reasoning. In this research, we conducted an empirical study on a real digital TV manufacturer (i.e., Company A). In addition, we have empirically evaluated the proposed approach and tool using real sales and service related data from digital TV manufacturer. In our empirical experiments, we intend to explore the performance of our proposed service forecasting framework when compared to the performances predicted by other two service forecasting methods; one is traditional CBR based forecasting model and the other is the existing service forecasting model used by Company A. We ran each service forecasting 144 times; each time, input data were randomly sampled for each service forecasting framework. To evaluate accuracy of forecasting results, we used Mean Absolute Percentage Error (MAPE) as primary performance measure in our experiments. We conducted one-way ANOVA test with the 144 measurements of MAPE for three different service forecasting approaches. For example, the F-ratio of MAPE for three different service forecasting approaches is 67.25 and the p-value is 0.000. This means that the difference between the MAPE of the three different service forecasting approaches is significant at the level of 0.000. Since there is a significant difference among the different service forecasting approaches, we conducted Tukey's HSD post hoc test to determine exactly which means of MAPE are significantly different from which other ones. In terms of MAPE, Tukey's HSD post hoc test grouped the three different service forecasting approaches into three different subsets in the following order: our proposed approach > traditional CBR-based service forecasting approach > the existing forecasting approach used by Company A. Consequently, our empirical experiments show that our proposed approach outperformed the traditional CBR based forecasting model and the existing service forecasting model used by Company A. The rest of this paper is organized as follows. Section 2 provides some research background information such as summary of CBR and SOM. Section 3 presents a hybrid service forecasting framework based on Case-based Reasoning and Self-Organizing Maps, while the empirical evaluation results are summarized in Section 4. Conclusion and future research directions are finally discussed in Section 5.

Topic Model Analysis of Research Themes and Trends in the Journal of Economic and Environmental Geology (기계학습 기반 토픽모델링을 이용한 학술지 "자원환경지질"의 연구주제 분류 및 연구동향 분석)

  • Kim, Taeyong;Park, Hyemin;Heo, Junyong;Yang, Minjune
    • Economic and Environmental Geology
    • /
    • v.54 no.3
    • /
    • pp.353-364
    • /
    • 2021
  • Since the mid-twentieth century, geology has gradually evolved as an interdisciplinary context in South Korea. The journal of Economic and Environmental Geology (EEG) has a long history of over 52 years and published interdisciplinary articles based on geology. In this study, we performed a literature review using topic modeling based on Latent Dirichlet Allocation (LDA), an unsupervised machine learning model, to identify geological topics, historical trends (classic topics and emerging topics), and association by analyzing titles, keywords, and abstracts of 2,571 publications in EEG during 1968-2020. The results showed that 8 topics ('petrology and geochemistry', 'hydrology and hydrogeology', 'economic geology', 'volcanology', 'soil contaminant and remediation', 'general and structural geology', 'geophysics and geophysical exploration', and 'clay mineral') were identified in the EEG. Before 1994, classic topics ('economic geology', 'volcanology', and 'general and structure geology') were dominant research trends. After 1994, emerging topics ('hydrology and hydrogeology', 'soil contaminant and remediation', 'clay mineral') have arisen, and its portion has gradually increased. The result of association analysis showed that EEG tends to be more comprehensive based on 'economic geology'. Our results provide understanding of how geological research topics branch out and merge with other fields using a useful literature review tool for geological research in South Korea.

Bankruptcy Type Prediction Using A Hybrid Artificial Neural Networks Model (하이브리드 인공신경망 모형을 이용한 부도 유형 예측)

  • Jo, Nam-ok;Kim, Hyun-jung;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.79-99
    • /
    • 2015
  • The prediction of bankruptcy has been extensively studied in the accounting and finance field. It can have an important impact on lending decisions and the profitability of financial institutions in terms of risk management. Many researchers have focused on constructing a more robust bankruptcy prediction model. Early studies primarily used statistical techniques such as multiple discriminant analysis (MDA) and logit analysis for bankruptcy prediction. However, many studies have demonstrated that artificial intelligence (AI) approaches, such as artificial neural networks (ANN), decision trees, case-based reasoning (CBR), and support vector machine (SVM), have been outperforming statistical techniques since 1990s for business classification problems because statistical methods have some rigid assumptions in their application. In previous studies on corporate bankruptcy, many researchers have focused on developing a bankruptcy prediction model using financial ratios. However, there are few studies that suggest the specific types of bankruptcy. Previous bankruptcy prediction models have generally been interested in predicting whether or not firms will become bankrupt. Most of the studies on bankruptcy types have focused on reviewing the previous literature or performing a case study. Thus, this study develops a model using data mining techniques for predicting the specific types of bankruptcy as well as the occurrence of bankruptcy in Korean small- and medium-sized construction firms in terms of profitability, stability, and activity index. Thus, firms will be able to prevent it from occurring in advance. We propose a hybrid approach using two artificial neural networks (ANNs) for the prediction of bankruptcy types. The first is a back-propagation neural network (BPN) model using supervised learning for bankruptcy prediction and the second is a self-organizing map (SOM) model using unsupervised learning to classify bankruptcy data into several types. Based on the constructed model, we predict the bankruptcy of companies by applying the BPN model to a validation set that was not utilized in the development of the model. This allows for identifying the specific types of bankruptcy by using bankruptcy data predicted by the BPN model. We calculated the average of selected input variables through statistical test for each cluster to interpret characteristics of the derived clusters in the SOM model. Each cluster represents bankruptcy type classified through data of bankruptcy firms, and input variables indicate financial ratios in interpreting the meaning of each cluster. The experimental result shows that each of five bankruptcy types has different characteristics according to financial ratios. Type 1 (severe bankruptcy) has inferior financial statements except for EBITDA (earnings before interest, taxes, depreciation, and amortization) to sales based on the clustering results. Type 2 (lack of stability) has a low quick ratio, low stockholder's equity to total assets, and high total borrowings to total assets. Type 3 (lack of activity) has a slightly low total asset turnover and fixed asset turnover. Type 4 (lack of profitability) has low retained earnings to total assets and EBITDA to sales which represent the indices of profitability. Type 5 (recoverable bankruptcy) includes firms that have a relatively good financial condition as compared to other bankruptcy types even though they are bankrupt. Based on the findings, researchers and practitioners engaged in the credit evaluation field can obtain more useful information about the types of corporate bankruptcy. In this paper, we utilized the financial ratios of firms to classify bankruptcy types. It is important to select the input variables that correctly predict bankruptcy and meaningfully classify the type of bankruptcy. In a further study, we will include non-financial factors such as size, industry, and age of the firms. Thus, we can obtain realistic clustering results for bankruptcy types by combining qualitative factors and reflecting the domain knowledge of experts.

A Study on Market Size Estimation Method by Product Group Using Word2Vec Algorithm (Word2Vec을 활용한 제품군별 시장규모 추정 방법에 관한 연구)

  • Jung, Ye Lim;Kim, Ji Hui;Yoo, Hyoung Sun
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.1-21
    • /
    • 2020
  • With the rapid development of artificial intelligence technology, various techniques have been developed to extract meaningful information from unstructured text data which constitutes a large portion of big data. Over the past decades, text mining technologies have been utilized in various industries for practical applications. In the field of business intelligence, it has been employed to discover new market and/or technology opportunities and support rational decision making of business participants. The market information such as market size, market growth rate, and market share is essential for setting companies' business strategies. There has been a continuous demand in various fields for specific product level-market information. However, the information has been generally provided at industry level or broad categories based on classification standards, making it difficult to obtain specific and proper information. In this regard, we propose a new methodology that can estimate the market sizes of product groups at more detailed levels than that of previously offered. We applied Word2Vec algorithm, a neural network based semantic word embedding model, to enable automatic market size estimation from individual companies' product information in a bottom-up manner. The overall process is as follows: First, the data related to product information is collected, refined, and restructured into suitable form for applying Word2Vec model. Next, the preprocessed data is embedded into vector space by Word2Vec and then the product groups are derived by extracting similar products names based on cosine similarity calculation. Finally, the sales data on the extracted products is summated to estimate the market size of the product groups. As an experimental data, text data of product names from Statistics Korea's microdata (345,103 cases) were mapped in multidimensional vector space by Word2Vec training. We performed parameters optimization for training and then applied vector dimension of 300 and window size of 15 as optimized parameters for further experiments. We employed index words of Korean Standard Industry Classification (KSIC) as a product name dataset to more efficiently cluster product groups. The product names which are similar to KSIC indexes were extracted based on cosine similarity. The market size of extracted products as one product category was calculated from individual companies' sales data. The market sizes of 11,654 specific product lines were automatically estimated by the proposed model. For the performance verification, the results were compared with actual market size of some items. The Pearson's correlation coefficient was 0.513. Our approach has several advantages differing from the previous studies. First, text mining and machine learning techniques were applied for the first time on market size estimation, overcoming the limitations of traditional sampling based- or multiple assumption required-methods. In addition, the level of market category can be easily and efficiently adjusted according to the purpose of information use by changing cosine similarity threshold. Furthermore, it has a high potential of practical applications since it can resolve unmet needs for detailed market size information in public and private sectors. Specifically, it can be utilized in technology evaluation and technology commercialization support program conducted by governmental institutions, as well as business strategies consulting and market analysis report publishing by private firms. The limitation of our study is that the presented model needs to be improved in terms of accuracy and reliability. The semantic-based word embedding module can be advanced by giving a proper order in the preprocessed dataset or by combining another algorithm such as Jaccard similarity with Word2Vec. Also, the methods of product group clustering can be changed to other types of unsupervised machine learning algorithm. Our group is currently working on subsequent studies and we expect that it can further improve the performance of the conceptually proposed basic model in this study.