명사 추출이란 문서 내에 존재하는 모든 명사를 찾아내는 작업으로서, 한국어 정보검색에서는 문서를 대표하는 색인어 또는 키워드로서 명사를 사용한다. 본 논문에서는 기 구축된 사전을 이용하여 키워드를 추출하는 방법을 제시한다. 이 방법은 불필요한 연산을 줄여서 수행 시간을 단축시켰다. 그리고 대용량의 문서에서도 정확도에 크게 영향을 미치지 않으면서 명사를 추출할 수 있다. 본 논문에서는 명사의 출현 특성을 이용한 명사 추출 방법 및 비감독 학습 기법에 의한 키워드 추출 방법을 제시한다.
본 연구는 현장조사에서 얻어진 갯벌의 퇴적물 입자조성과 동일시기의 위성영상에서 추출된 반사치를 이용하여 함평만 갯벌의 입자분포도를 제시하였다. Landsat TM 자료에서 추출된 갯벌 입자조성에 따른 스팩트럼이 분석되었고, 7개의 위성영상은 ISODATA 와 K-MEANS 방법으로 분류되었다. 무감독분류된 결과는 현장관측치에 의해 분류 정확도가 평가되었으며, ISODATA와 K-MEANS 방법의 분류 정확도는 84.3%와 85.7%이다. 다중시기 위성영상 분류 결과를 검증하기 위해 현장조사 자료에 의해 분류된 1999년 5월 TM 영상을 참조자료로 하여 다중시기의 영상분류 결과를 비교하였다.
본 연구는 무감독 영상분류를 위하여 공간지역 확장을 통하여 영상을 분할한 후 분할된 집단을 한정된 수의 클래스로 분류하는 다중단계 기법을 제안하고 있다. 제안된 알고리듬은 무감독 분석을 위하여 작은 집단들을 단계적으로 큰 집단들로 합병해 가는 계층집단연결 기법에 기반을 두고 있다. 다중단계 기법의 영상분할 단계는 공간적으로 근접하고 있는 이웃지역간의 결합을 통하여 최종적으로 전체영상 공간내의 모든 집단에 대해서 서로 이웃하고 있는 집단들의 물리적 특성이 서로 다르도록 영상을 분할하는 과정이고, 영상분류 단계는 결합 지역의 공간적 제약 없이 영상 분할 단계에서 분할된 지역을 상대적으로 적은 수의 클래스로 분류하는 과정이다. 제안 된 알고리듬에서 사용하고 있는 계층집단연결 기법의 계산/기억 상의 복잡성을 완화시키기 위해 상호최근사 이웃쌍과 다중창 작업을 사용하고 있다. 모의 자료를 사용하여 제단 된 알고리듬 대한 평가와 효율성을 검증하였고 경기도 용인.능평지역의 LANDSAT ETM+ 자료에 적용한 결과를 예시하고 있다.
Bsoul, Qusay;Abdul Salam, Rosalina;Atwan, Jaffar;Jawarneh, Malik
Journal of Information Science Theory and Practice
/
제9권4호
/
pp.15-34
/
2021
Text clustering is one of the most commonly used methods for detecting themes or types of documents. Text clustering is used in many fields, but its effectiveness is still not sufficient to be used for the understanding of Arabic text, especially with respect to terms extraction, unsupervised feature selection, and clustering algorithms. In most cases, terms extraction focuses on nouns. Clustering simplifies the understanding of an Arabic text like the text of the Quran; it is important not only for Muslims but for all people who want to know more about Islam. This paper discusses the complexity and limitations of Arabic text clustering in the Quran based on their themes. Unsupervised feature selection does not consider the relationships between the selected features. One weakness of clustering algorithms is that the selection of the optimal initial centroid still depends on chances and manual settings. Consequently, this paper reviews literature about the three major stages of Arabic clustering: terms extraction, unsupervised feature selection, and clustering. Six experiments were conducted to demonstrate previously un-discussed problems related to the metrics used for feature selection and clustering. Suggestions to improve clustering of the Quran based on themes are presented and discussed.
Objectives : We aim to assist in choosing an appropriate method for word extraction when analyzing East Asian Traditional Medical texts based on unsupervised learning. Methods : In order to assign ranks to substrings, we conducted a test using one method(BE:Branching Entropy) for exterior boundary value, three methods(CS:cohesion score, TS:t-score, SL:simple-ll) for interior boundary value, and six methods(BExSL, BExTS, BExCS, CSxTS, CSxSL, TSxSL) from combining them. Results : When Miss Rate(MR) was used as the criterion, the error was minimal when the TS and SL were used together, while the error was maximum when CS was used alone. When number of segmented texts was applied as weight value, the results were the best in the case of SL, and the worst in the case of BE alone. Conclusions : Unsupervised-Learning-Based Word Extraction is a method that can be used to analyze texts without a prepared set of vocabulary data. When using this method, SL or the combination of SL and TS could be considered primarily.
Nowadays, Electronic Medical Record (EMR) has just implemented at few hospitals for Outpatient Department (OPD). OPD is the diversified data, it includes demographic and diseases of patient, so it need to be clustered in order to explore the hidden rules and the relationship of data types of patient's information. In this paper, we propose a novel approach for unsupervised clustering of patient's demographic and diseases in OPD. Firstly, we collect data from a hospital at OPD. Then, we preprocess and transform data by using powerful techniques such as standardization, label encoder, and categorical encoder. After obtaining transformed data, we use some strong experiments, techniques, and evaluation to select the best number of clusters and best clustering algorithm. In addition, we use some tests and measurements to analyze and evaluate cluster tendency, models, and algorithms. Finally, we obtain the results to analyze and discover new knowledge, meanings, and rules. Clusters that are found out in this research provide knowledge to medical managers and doctors. From these information, they can improve the patient management methods, patient arrangement methods, and doctor's ability. In addition, it is a reference for medical data scientist to mine OPD dataset.
This study described partial discharge(PD) distribution analysis between the XLPE(Cross-Linked PolyEthylene)and EPDM(Ethylene Propylene Diene Monomer) interface with unsupervised classification. The ${\phi}-q-n$ patterns were analyzed using phase resolved partial discharge(PRPD). K-means cluster analysis forms a cluster based on similarities and distances among scattered individuals, and analyzes the characteristics of the formed clusters, dividing the multivariate data into several groups according to the similarity of each characteristic, Is a statistical analysis that makes it easier to navigate. It was confirmed that the phase angle of the cluster with the maximum discharge charge was concentrated around $0^{\circ}$ and $180^{\circ}$ at 30 kV after the initial phase distribution localized around $90^{\circ}$ and $300^{\circ}$ expanded to the whole phase angle according to the voltage rise. The Euclidean distance between the center of gravity and the discharge charge in the ${\Phi}-q$ cluster increased with increasing applied voltage.
Coal pillar assessment is of broad importance to underground engineering structure, as the pillar failure can lead to enormous disasters. Because of the highly non-linear correlation between the pillar failure and its influential attributes, conventional forecasting techniques cannot generate accurate outcomes. To approximate the complex behavior of coal pillar, this paper elucidates a new idea to forecast the underground coal pillar stability using combined unsupervised-supervised learning. In order to build a database of the study, a total of 90 patterns of pillar cases were collected from authentic engineering structures. A state-of-the art feature depletion method, t-distribution symmetric neighbor embedding (t-SNE) has been employed to reduce significance of actual data features. Consequently, an unsupervised machine learning technique K-mean clustering was followed to reassign the t-SNE dimensionality reduced data in order to compute the relative class of coal pillar cases. Following that, the reassign dataset was divided into two parts: 70 percent for training dataset and 30 percent for testing dataset, respectively. The accuracy of the predicted data was then examined using support vector classifier (SVC) model performance measures such as precision, recall, and f1-score. As a result, the proposed model can be employed for properly predicting the pillar failure class in a variety of underground rock engineering projects.
Minte, Zhang;Tong, Guo;Ruizhao, Zhu;Yueran, Zong;Zhihong, Pan
Smart Structures and Systems
/
제30권6호
/
pp.557-569
/
2022
Vibration-based structural health monitoring (SHM) is crucial for the dynamic maintenance of civil building structures to protect property security and the lives of the public. Analyzing these vibrations with modern artificial intelligence and deep learning (DL) methods is a new trend. This paper proposed an unsupervised deep learning method based on a convolutional autoencoder (CAE), which can overcome the limitations of conventional supervised deep learning. With the convolutional core applied to the DL network, the method can extract features self-adaptively and efficiently. The effectiveness of the method in detecting damage is then tested using a benchmark model. Thereafter, this method is used to detect damage and instant disaster events in a rubber bearing-isolated gymnasium structure. The results indicate that the method enables the CAE network to learn the intact vibrations, so as to distinguish between different damage states of the benchmark model, and the outcome meets the high-dimensional data distribution characteristics visualized by the t-SNE method. Besides, the CAE-based network trained with daily vibrations of the isolating layer in the gymnasium can precisely recover newly collected vibration and detect the occurrence of the ground motion. The proposed method is effective at identifying nonlinear variations in the dynamic responses and has the potential to be used for structural condition assessment and safety warning.
본 연구에서는 시청각 정보를 이용한 비교사 토론 인덱싱 방법을 제안한다. 제안하는 방법은 BIC (Bayesian Information Criterion)에 의한 음성 클러스터링 결과와 거리기반 함수에 의한 영상 클러스터링 결과를 결합한다. 시청각 정보의 결합은 음성 또는 영상 정보를 개별적으로 사용하여 클러스터링할 때 나타나는 문제점을 줄일 수 있고, 토론 데이터의 효과적인 내용 기반의 분석이 가능하다. 제안하는 방법의 성능 평가를 위해 서로 다른 5종류의 토론 데이터에 대해 음성, 영상 정보를 개별적으로 사용할 때와 두 가지 정보를 동시에 사용할 때의 성능 평가를 수행하였다. 실험 결과 음성과 영상 정보를 결합한 방법이 음성, 영상 정보를 개별적으로 사용할 때 보다 토론 인덱싱에 효과적임을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.