• 제목/요약/키워드: Unsteady calculation

검색결과 209건 처리시간 0.024초

장방형 해양구조물의 변장비에 따른 와방출 특성에 관한 연구 (A Study on Vortex Shedding Characteristics of Rectangular Marine Structure With Aspect Ratio)

  • 김진구;조대환
    • 해양환경안전학회지
    • /
    • 제5권2호
    • /
    • pp.35-44
    • /
    • 1999
  • High negative pressure coefficient is formed in the corner of the bluff body structures. For many curtain wall designers this phenomena is of interest because this high negative pressure coefficient is adopted in structural calculation. The present study is aimed to investigate shedding vortex characteristics of two-dimensional rectangular prism flow. Unsteady calculation by finite difference method based upon SOLA is carried out for three aspect ratios(1:1, 1:2, 1:3) of Re=10$^4$ in viscous incompressible flow within infinite domain. Fluctuation of velocity components at various pick-up points and time variation of drag and lift coefficients are analysed by FFT method to reveal shedding vortex frequency patterns. At aspect ratio 1:1, one primary Strouhal number appears for about all pick-up points. At aspect ratio 1:2, two representative Strouhal numbers are classified by pick-up positions and their flows show two different reattachment patterns. For aspect ratio 1:3, frequency spectrum maintains multiple peaks.

  • PDF

제철 소결기 배드 내 연소 및 열전달 모델링;인자 변화에 의한 계산 결과 평가 (Modeling of Combustion and Heat transfer in the Iron Ore Sintering Bed;Evaluation of the Calculation Results for Various Cases)

  • 양원;류창국;최상민
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제24회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.171-178
    • /
    • 2002
  • Numerical simulations of the condition in the iron ore sintering bed are performed for various parameters. The sintering bed is modelled as an unsteady one-dimensional progress of solid material, containing cokes and iron ore. Bed temperature, solid mass and gas species distributions are predicted for various parameters of moisture contents, cokes contents and air suction rates, along with the various particle diameters of the solid for sensitivity analysis. Calculation results show that influences of these parameters on the bed condition should be carefully evaluated for achievement of the self-sustaining combustion without the high temperature section, which can cause the excessive melting in the bed. It suggests that the model should be extended to consider the bed structural change and multiple solid phase, which can treat the inerts and fuel particles separately.

  • PDF

플래시 상평형 방법에 의한 고압 액적 기화 모델 (Modeling of High Pressure Droplet Vaporization with Flash Phase Equilibrium Calculation)

  • 이강원;윤웅섭
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2002년도 제18회 학술발표대회 논문초록집
    • /
    • pp.65-69
    • /
    • 2002
  • Unsteady vaporization of a droplet quiescent in a high pressure environment are studied with emphasis placed oil the modeling of equilibrium at vapor-liquid interface. Complete set of conservation equations for liquid and gas phases is numerically time integrated. Vapor-liquid interfacial thermodynamics are solved by f]ash equilibrium calculation method. The model was proper]y validated with experiment and the improvement in the solution accuracy was made. Vaporization of n-pentane fuel droplet in nitrogen background gas is examined. Effects of ambient gas solubility, property variation, transient diffusion, and multicomponent transport on the droplet vaporization are investigated systematically. High-pressure effects on the droplet vaporization is examined and discussed.

  • PDF

원심 압축기 베인 디퓨져내 비정상 유동의 수치해석적 연구 (Numerical Study on the Unsteady Flow in the Vaned Diffuser of Centrifugal Compressor)

  • 황성목;한화택;김원갑
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.113-119
    • /
    • 2001
  • Interaction of flow through an Impeller and a Vaned Diffuser in Centrifugal Compressor was investigated using the 3-dimensional Wavier-Stokes solution method. To consider the interaction effect of impeller and vaned diffuser, Inlet boundary conditions are imposed with the results of the steady calculation of the impeller and rotates with time. The results have been compared to steady computation results and experiment. From this, it is discussed about the compatability of the method and the advantage and disadvantage of the steady calculation.

  • PDF

증가 계수의 직접 계산법을 이용한 항공기 유동장 효과의 예측 (PREDICTION OF AIRCRAFT FLOW FIELD EFFECT BY DIRECT CALCULATION OF INCREMENTAL COEFFICIENTS)

  • 김유진;권장혁
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 추계 학술대회논문집
    • /
    • pp.41-46
    • /
    • 2006
  • When new weapons are introduced, the target points estimation is one of the important objectives in the flight test as well as the safe separation. The prediction methods help to design the flight test schedule. However, the incremental aerodynamic coefficients in the aircraft flow field so-called BSE are difficult to predict. Generally, the semiempirical methods such as the grid methods, IFM and Flow TGP using database are used for estimation of BSE. However, these methods are quasi-steady methods using static aerodynamic loads. Nowadays the time-accurate CFD method is often used to predict the store separation event. In the current process, the incremental aerodynamic coefficients in BSE regime are calculated directly, and the elimination of delta coefficients is checked simultaneously. This stage can be used for the initial condition of Flow TGP with freestream database. Two dimensional supersonic and subsonic store separation problems have been simulated and incremental coefficients are calculated. The results show the time when the store gets out of BSE region.

  • PDF

Detection of Leakage Point via Frequency Analysis of a Pipeline Flow

  • Kim, Sanghyun;Wansuk Yoo;Injoon Kang
    • Journal of Mechanical Science and Technology
    • /
    • 제15권2호
    • /
    • pp.232-238
    • /
    • 2001
  • Fast Fourier Transformation is employed to convert the head variation of a pipeline in the time domain to the amplitude of the frequency domain. Applying method of characteristics to a pipeline provides a significant frequency range for a surge introduced from the valve modulation. Inverse Fast Fourier Transformation and a Finite Impulse Response Filter can be used to remove any possible noise existing from the significant frequency range of an unsteady condition. A filtered signal shows higher potential for the inverse calculation of leakage detection than the noise-added signal does. The respective performances of Inverse Fast Fourier Transformation and a Finite Impulse Response Filter are compared in terms of leakage detection capability. Characteristics of the frequency range for multiple leakages were investigated to validate the effectiveness of the noise control method in the frequency domain.

  • PDF

4사이클 전기점화기관에서 흡.배기관내 비정상 유동특성 해석에 관한 연구 (A Study on the Unsteady Flow Characteristics Analysis of Intake and Exhaust Pipe in 4 Cycle Spark-Ignition Engine)

  • 정수진;김태훈;민규식;장형성
    • 한국안전학회지
    • /
    • 제9권2호
    • /
    • pp.3-11
    • /
    • 1994
  • This study discribes result of comparision of two other numerical method, method of characteristics (MOC) and Lax-Wendroff method(LWM) applied at wave action analysis of Intake and exhaust pipe. Partiality FCT(Flux Correct Transport) scheme is appeneded to LWM to protest unacceptable overshoots, occuring near discontinuity. The final conclusion of this study is that MOC should be replaced by a second order finite difference approach(such as the LW method). Clear benefits we can get by change are faster calculation, higher accuracy, conservation of mass and consistent calculation method.

  • PDF

Numerical Calculation of Minimum Ignition Energy for Hydrogen and Methane Fuels

  • Kim, Hong-Jip;Chung, Suk-Ho;Sohn, Chae-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • 제18권5호
    • /
    • pp.838-846
    • /
    • 2004
  • Minimum ignition energies of hydrogen/air and methane/air mixtures have been investigated numerically by solving unsteady one-dimensional conservation equations with detailed chemical kinetic mechanisms. Initial kernel size needed for numerical calculation is a sensitive function of initial pressure of a mixture and should be estimated properly to obtain quantitative agreement with experimental results. A simple macroscopic model to determine minimum ignition energy has been proposed, where the initial kernel size is correlated with the quenching distance of a mixture and evaluated from the quenching distance determined from experiment. The simulation predicts minimum ignition energies of two sample mixtures successfully which are in a good agreement with the experimental data for the ranges of pressure and equivalence ratio.

비대선 모형에 대한 점성유동의 수치해석연구 (A Study on the Numerical Analysis of the Viscous Flow for a Full Ship Model)

  • 박명규;강국진
    • 한국항해학회지
    • /
    • 제19권2호
    • /
    • pp.13-22
    • /
    • 1995
  • This paper presents the numerical analysis results of the viscous flow for a full ship model. The mass and momentum conservation equations are used for governing equations, and the flow field is discretized by the Finite-Volume Method for the numerical calculation. An algebraic grid and elliptic grid generation techniques are adopted for generation of the body-fitted coordinates system, which is suitable to ship's hull forms. Time-marching procedure is used to solve the three-dimensional unsteady problem, where the convection terms are approximated by the QUICK scheme and the 2nd-order central differencing scheme is used for other spatial derivatives. A Sub-Grid Scale turbulence model is used to approximate the turbulence, and the wall function is used at the body surface. Pressure and velocity fields are calculated by the simultaneous iteration method. Numerical calculations were accomplished for the Crude Oil Tanker(DWT 95,000tons, Cb=0.805) model. Calculation results are compared to the experimental results and show good agreements.

  • PDF

A Numerical Analysis on the Transient Heat Transfer in a Heat Exchanger Pipe Flow

  • Chang, Keun-Sun;Kweon, Young-Chel;Jin, Seong-Ryung
    • Nuclear Engineering and Technology
    • /
    • 제32권1호
    • /
    • pp.46-56
    • /
    • 2000
  • Numerical results are presented for the 2-dimensional turbulent transient heat transfer of the shell/tube heat exchanger with a step change of the inlet temperature in the primary side. Heat transfer boundary conditions outside the pipe are given partially by the convection heat transfer conditions and partially by insulated conditions. Calculation results were obtained by solving the unsteady two-dimensional elliptic forms for the Reynolds-averaged governing equations for the mass, momentum and energy. Finite-difference method was used to obtain discretization equations, and the SIMPLER solution algorithm was employed for the calculation procedure. Turbulent model used is the algebraic model proposed by Cebeci-Smith. Results presented include the time variant Nusselt number distribution, average temperature distribution and outlet temperatures for the various inlet temperatures and flow rates.

  • PDF