• 제목/요약/키워드: Unsteady calculation

검색결과 209건 처리시간 0.025초

Weis-Fogh형 선박추진기구의 유체역학적 특성계산 (CALCULATION OF HYDRODYNAMIC CHARACTERISTICS FOR SHIP'S PROPULSION MECHANISM OF WEIS-FOGH TYPE)

  • 노기덕;강명훈
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.305-310
    • /
    • 2005
  • The velocity and pressure fields of a ship's propulsion mechanism of the Weis-Fogh type, in which a airfoil moves reciprocally in a channel, are studied in this paper using the advanced vortex method. The airfoil and the channel are approximated by a finite number of source and vortex panels, and the free vortices are introduced from the body surfaces. The viscous diffusion of fluid is represented using the core-spreading model to the discrete vortices. The velocity is calculated on the basis of the generalized Biot-Savart low and the pressure field is calculated from integrating the equation given by the instantaneous velocity and vorticity fields. Two-dimensional unsteady viscose flows of this propulsion mechanism are numerically clarified, and the calculated results agree well with the experimental ones.

  • PDF

2단식 Weis-Foghg형 선박 추진기구의 유동장 특성계산 (Flowfield Calculation for Ship's Propulsion Mechanism of Two-Stage Weis-Fogy Type)

  • 노기덕
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권3호
    • /
    • pp.371-380
    • /
    • 1998
  • The flow patterns and dynamic properties of ship's propulsion mechanism of two-stage Weis-Fogh type are studied by the discrete vortex method. In order to study the effects of the interaction of the two wings two cases of the phase differences of the wing's motion are considered the same phase and the reverse phase. The flow patterns by simulations correspond to the photographs obtained by flow visualization and flowfield of the propulsion mechanism which is unsteady and complex is clearly visualized by numerical simulations. The time histories of the thrust an the drag coefficients on the wings are also calculated and the effects of the interaction of the two wings are numerically clarified.

  • PDF

원주 주위의 비정상 층류유동과 열전달에 대한 수치해석 (Numerical Analysis for the Unsteady Laminar Flow and Heat Transfer Around a Circular Cylinder)

  • 조석호;남청도;부정숙
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제15권2호
    • /
    • pp.64-72
    • /
    • 1991
  • The unsteady, two-dimensional laminar flow and heat transfer of an incompressible, constant-property fluid flowing around a circular cylinder are numerically analyzed. The Navier-Strokes equation and the energy equation are solved by the finite difference method. The range of the Reynolds number is 10 to 100 and the Prandtl number considered is 0.7. The contours of the flow pattern, equi-vorticity line and isotherm pattern around a circular cylinder are shown. Also, numerical solutions of the surface vorticity, pressure coefficient, drag coefficient, local Nusselt number and mean Nusselt number are obtained. The numerical results for the final time fo calculation are compared with the other available experimental and theoretical results for the steady state and are found to be in good agreement with them.

  • PDF

Calculation of Thrust and Drag Characteristics for Ship′s Propulsion Mechanism of Weis-Fogh Type

  • Ro, Ki-Deok
    • Journal of Mechanical Science and Technology
    • /
    • 제14권11호
    • /
    • pp.1257-1266
    • /
    • 2000
  • The flow field if a ship's propulsion mechanism of Weis-Fogh type is studied by the discrete vertex method. The wing in a channel is approximated by a finite number of bound vortices, and free vortices representing the separated flow are introduced from the trailing edge if the wing. The time histories of the thrust, the drag, and the moment acting on the wing are calculated, including the unsteady force due to the change of strength of the bound vortices. These calculated values agree well with the experimental values. The flow field of this propulsion mechanism is numerically clarified.

  • PDF

비정상 화염편 모델을 이용한 대기압 층류 비예혼합 CH4/Air 화염장의 매연입자 생성 특성 및 화염구조 해석 (Unsteady Flamelet Modeling for Flame Structure and Soot Formation of Lanimar Non-premixed CH4/Air Flame)

  • 김태훈;전상태;김용모
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.137-138
    • /
    • 2012
  • The two-equation soot model based on the transient laminar flamelet model is implemented for soot formation of laminar non-premixed $CH_4/Air$ flame with detailed chemical reaction mechanism and complex thermodynamic properties. The soot model represents nucleation, growth and oxidation with gas-phase chemistry. This represented unsteady flamelet soot model has been tested and compared using well verified reference calculation result obtained solving the Full Transport Equations method.

  • PDF

저레이놀즈수 난류모델을 사용한 정익-동익 상호작용 해석 (Calculation of Rotor-Stator Interactions Using a Low Reynolds Number Turbulence Model)

  • 최창호;유정열
    • 대한기계학회논문집B
    • /
    • 제23권10호
    • /
    • pp.1229-1239
    • /
    • 1999
  • A computational study on unsteady compressible flows has been performed by adopting a low Reynolds number $k-{\omega}$ turbulence model in conjunction with dual time stepping scheme. An explicit four-stage Runge-Kutta scheme for the Navier-Stokes equations and an approximate factorization scheme for the $k-{\omega}$ turbulence model equations are used. Computational results obtained for blade surface pressure distributions in the process of rotor-stator interaction in a turbine stage are in good agreement with extant experimental data. The effects of the wake from the stator on the boundary-layer transition over the rotor blade surface are discussed by showing that high intensity turbulence of the stator wake induces an early transition.

Weis-Fogh형 선박 추진기구의 역학적 특성계산 (Numerical calculation of the dynamic properties of Weis-Fogh type ship's propulsion mechanism)

  • 노기덕
    • 대한기계학회논문집B
    • /
    • 제21권11호
    • /
    • pp.1518-1526
    • /
    • 1997
  • The dynamic properties of a ship's propulsion mechanism of Weis-Fogh type are studied by the discrete vortex method. The wing in the channel is approximated by a finite number of bound vortices and free vortices representing the separated flow are introduced from the trailing edge of the wing. The time histories of the thrust, the drag, and the moment acting on the wing are calculated, including the unsteady force due to the change of strength of the bound vortices. These calculated results show a similar tendency to the experimental ones qualitatively and the dynamic properties of this propulsion mechanism are numerically clarified.

중장비 축류홴 저소음화 기법 (Low Noise Techique of Axial Fan in Heavy Equipments)

  • 정기훈;최한림;김용제;이덕주
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.388-395
    • /
    • 2000
  • Axial fans are widely used in heavy machines due to their ability to produce high flow rate for cooling of engines. At the same time, the noise generated by these fans causes one of the most serious problems. This work is concerned with the low noise technique of discrete frequency noise. The prediction model, which allowed the calculation of acoustic pressure at the blade passing frequency and it's harmonics, has been developed by Farrasat. This theory is founded upon the acoustic radiation of unsteady forces acting on blade. To calculate the unsteady resultant force over the fan blade. Time-Marching Free-Wake Method are used. The ideas of low noise technique are obtained from Blade-Momentum Methods. In this paper, the discussion is confined to the performance and discrete noise of axial fan in heavy equipments.

  • PDF

원주방향 윤활홈을 갖는 엔진 주베어링의 연속 마찰 해석 (Analysis of instantaneous friction in full-circumferentially grooved engine main bearings)

  • 전상명
    • 오토저널
    • /
    • 제12권4호
    • /
    • pp.35-46
    • /
    • 1990
  • The instantaneous friction in main bearings of a single cylinder diesel engine was determined by measuring the instantaneous angular velocity, calculating the resulting forces acting on the bearings, and solving the unsteady Reynolds equation in combination with the mobility method. The considered system consists of only the crankshaft with flywheel and oil pump. The thermal effects were not considered because of the short testing time. The tests were conducted using an electric start motor. The results indicated that when the bearing is not near equilibrium for very small speeds, simple film lubrication theories are not accurate. The details of grooves and unsteady terms in the Reynolds equation cannot be ignored for increasing efficiency of instantaneous friction calculation of the engine bearings. The effects of speed on instantaneous friction and energy lost in friction were determined.

  • PDF

키메라 격자를 이용한 발사체의 비정상 열유동해석 (Numerical Analysis of Unsteady Thermo-Fluid Behavior for Launched Body using Chimera Mesh)

  • 손동현;손창현;하재훈
    • 한국군사과학기술학회지
    • /
    • 제13권6호
    • /
    • pp.1013-1018
    • /
    • 2010
  • This paper presents a numerical evaluation of the launch dynamics and thermo-fluid phenomena for gas generator launch eject system. The existing gas dynamic model for launching eject body used ideal gas and adiabatic assumption with empirical energy loss model. In present study, a turbulent Navier-Stokes solver with CHIMERA mesh is employed to predict the detail unsteady thermo-fluid dynamics for the launched body. The calculation results show that proper grid number is necessary for good agreement with experimental data. The important effects for accurate prediction are a gap distance and thermal boundary condition on the wall. The computational results show good agreement with experiment data.