• Title/Summary/Keyword: Unsteady Fluid Flow

Search Result 518, Processing Time 0.028 seconds

Prediction of Internal Broadband Noise of a Centrifugal Fan Using Stochastic Turbulent Synthetic Model (통계적 난류합성 모델을 이용한 원심홴 내부 광대역 소음 예측)

  • Heo, Seung;Kim, Dae-Hwan;Cheong, Cheol-Ung;Kim, Tae-Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.12
    • /
    • pp.1138-1145
    • /
    • 2011
  • The internal broadband noise of a centrifugal fan in a household refrigerator is predicted using hybrid CAA techniques based on stochastic turbulent synthetic model. First, the unsteady flow field around the centrifugal fan is predicted using computational fluid dynamics(CFD) method. Then, the turbulent flow field is synthesized by applying the stochastic turbulent synthetic technique to the predicted flow field. The aerodynamic noise sources of the centrifugal fan are modeled on a basis of the synthesized turbulent field. Finally, the internal broadband noise of the centrifugal fan is predicted using the boundary element method(BEM) and the modeled sources. The predicted noise spectrum is compared with the experimental data. It is found that the predicted result closely follows the experimental data. The proposed method can be used as an effective tool for designing low-noise fans without expensive computational cost required generally for the LES and DNS simulations to resolve the turbulence flow field responsible for the broadband noise.

The Characteristic Investigation of the Flowfield around Two Circular Cylinders in the Tandem Arrangement Using the PIV (PIV를 이용한 직렬배열에서 2원주 주위의 유동장 특성 연구)

  • Ro, Ki-Deok;Kim, Kwang-Seok;Park, Ji-Tae;Oh, Se-Kyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.159-165
    • /
    • 2007
  • The Characteristics of the flowfield around two circular cylinders in tandem arrangement was investigated by PIV. Strouhal numbers. velocity vectors and velocity profiles were observed at centre-to-centre space ratios of P/D= 1.5. 2.0 and 2.5, and Reynolds number of $Re=3.0{\times}10^3{\sim}5.0{\times}10^3$. As the results the Strouhal numbers measured in the rear region of the cylinder of wake side were decreased with the space ratios. The flow between two cylinders was almost stagnated and the size of the stagnated region was larger in the close side than in the far side of the front cylinder. The direction of vortex between two cylinders was opposed each other with the small difference(${\alpha}\;{\pm}1.0^{\circ}$) of the attack angle ${\alpha}$.

Internal Aerodynamic Noise from Quick Opening Throttle Valve (쓰로틀 밸브의 빠른 열림 동작에 의한 내부공력소음)

  • 정철웅;김성태;김재헌;이수갑
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.4
    • /
    • pp.310-318
    • /
    • 2004
  • For many industrial problems originating from aerodynamic noise, noise prediction techniques, reliable and easy to apply, would be of great value to engineers and manufacturers. General algorithm is presented for the prediction of internal flow-induced noise from quick opening throttle valve in an automotive engine. This algorithm is based on the integral formula derived by using the General Green Function, Lighthill's acoustic analogy and Curle's extension of Lighthill's. Novel approach of this algorithm is that the integral formula is so arranged as to predict frequency-domain acoustic signal at any location in a duct by using unsteady flow data in space and time, which can be provided by the Computational Fluid Dynamics Techniques. This semi-analytic model is applied to the prediction of internal aerodynamic noise from a throttle valve in an automotive engine. The predicted noise levels from the throttle valve show good agreement with actual measurements. The results show that the dipole noise is dominant in this phenomena and the origin of noise sources is attributed to the anti-vortex lines formed in the down-stream from a throttle valve. This illustrative computation shows that the current method permits generalized predictions of flow noise generated by bluff bodies and turbulence in flow ducts.

Visualization of the Flow Pattern Between Co-rotating Disks in HDD (HDD의 동시 회전 디스크 내부 유동 패턴의 가시화)

  • Kong Dae-Wee;Joo Won-Gu;Doh Deug-Hee
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.67-70
    • /
    • 2003
  • Hard disk drives (HDD) in computer are used extensively as data storage capacity. The trend in the computer industry to produce smaller disk drives rotating at higher speeds requires an improved understanding of fluid motion in the space between disks. Laser sheet and digital camera was used for 2-dimensional visualization of the unsteady flow between the center pair of two co-rotating disks in air with a cylindrical enclosure (or shroud). Geometric parameters are gap height (H) between disks, and gap distance (G) between disk tip and shroud. The lobe-structured boundary between inner region and outer region was detected by inserted particles, and the number of dominant vortices was determined clearly It is found from flow visualization that the number of vortex cells can be correlated with Reynolds number based on H which is defined as $Re_H={\Omega}RH/v$ ranging from $3.18\times10^3\;to\;1.43\times10^4$, and decreases as the disk speed increases. The lobe pattern by vortex cells is changed to a circular pattern for the wide gap than narrow one.

  • PDF

Prediction of internal broadband noise of a centrifugal fan using stochastic turbulent synthetic model (통계적난류합성모델을 이용한 원심홴 내부 광대역 소음 예측)

  • Heo, Seung;Kim, Dae-Hwan;Cheong, Cheol-Ung;Kim, Tae-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.627-632
    • /
    • 2011
  • The internal broadband noise of a centrifugal fan in a household refrigerator is predicted by using hybrid CAA technique based on stochastic turbulent synthetic model. First, the unsteady flow field around the centrifugal fan is predicted using Computational Fluid Dynamics (CFD) method. Then, the turbulent flow field is synthesized by applying the stochastic turbulent synthetic technique to the predicted flow field. The aerodynamic noise sources of the centrifugal fan are modeled on a basis of the synthesized turbulent field. Finally, the broadband noise of the centrifugal fan is predicted using Boundary Element Method (BEM) and the modeled sources. The predicted result is compared with the experimental data. It is found that the predicted result closely follows the experimental data. The proposed method can be used as an effective tool for designing low-noise fans without expensive computational cost required generally for the LES and DNS simulations to resolve the turbulence flow field responsible for the broadband noise.

  • PDF

Visualization of the Flow Pattern Between Co-rotating Disks in Shroud (원통형 케이스 내의 동시회전 디스크 내부 유동패턴의 가시화)

  • Kong, Dae-Wee;Joo, Won-Gu
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1661-1665
    • /
    • 2004
  • Hard disk drives (HDD) in computer are used extensively as data storage capacity. The trend in the computer industry to produce smaller disk drives rotating at higher speeds requires an improved understanding of fluid motion in the space between disks. Laser sheet and digital camera was used for 2-dimensional visualization of the unsteady flow between co-rotating disks in air with a cylindrical enclosure (or shroud). Geometric parameters are gap height (H) between disks, and gap distance (G) between disk tip and shroud. The lobe-structured boundary between inner region and outer region was detected by inserted particles, and the number of dominant vortices was determined clearly It is found from flow visualization that the number of vortex cells can be correlated with Reynolds number based on H which is defined as $Re_H={\Omega}RH/v$ ranging from $7.96{\times}10^2$ to $1.43{\times}10^4$, and decreases as the disk speed increases. The lobe pattern by vortex cells is changed to a circular pattern for the wide gap than narrow one.

  • PDF

The Visualization of the Flow through Tube Banks in Various Arrangements (다양한 배열 상태에 놓인 관군을 지나는 흐름의 가시화)

  • Ro, Ki-Deok;Gong, Tae-Hee;Jeoi, Jeong-Gi;Kim, Seong-Jae;Kim, Tae-Kyeung
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2530-2535
    • /
    • 2008
  • The Visualizations of the flowfield through tube banks with in-line and staggered arrangements were investigated by PIV. Strouhal numbers, velocity vectors and velocity profiles around the cylinders with in-line and staggered arrangements were observed at the pitch ratio $P_t/D=2.0$ and Reynolds number of $Re=4.0{\times}10^3$. As the results The flow patterns through tube banks were almost a straight line in case of the in-line arrangement while it was almost 八 type in case of the staggered arrangement in the direction of the wake. The average velocity in the rear region of the tube banks with the staggered arrangement was far smaller than that with the in-line arrangement. The Strouhal number in the last rank was far smaller than that in the front ranks in both of the in-line and staggered arrangements. The wake of each cylinder changed with time and with the position of the cylinder.

  • PDF

Numerical Analysis of a Tip Vortex Flow for Propeller Tip Shapes (추진기 날개 끝 형상변화에 따른 보오텍스 유동에 대한 수치해석)

  • Park, Sun-Ho;Seo, Jeong-Hwa;Kim, Dong-Hwan;Rhee, Shin-Hyung;Kim, Ki-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.6
    • /
    • pp.501-508
    • /
    • 2011
  • In order to control the tip vortex cavitation occurring around the tip of a rotating propeller blade, researches on the propeller cavitation and blade tip vortex flows have been increased. In this paper, the propeller tip vortex flow for a blunt and sharp tips was studied using an unsteady Reynolds-averaged Navier-Stokes equations solver based on a cell-centered finite volume method. In numerical open water test, torques, thrusts, pressure distributions and vortex flows were compared for various rotating speeds. To consider a hull wake, the nominal wake was specified in inlet boundary condition. Pressure distributions and vortex flows with the hull wake were investigated for various propeller rotating angles. From the results, it was confirmed that the blunt tip propeller delayed the tip vortex flow.

Dynamic Characteristics of Thermal Stratification Build-up by Unsteady Natural Convection (비정상 자연대류에 의한 온도성층화의 동특성에 관한 연구)

  • Kang, B.S.;Lee, J.S.;Lee, T.S.;Ro, S.T.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.4
    • /
    • pp.382-394
    • /
    • 1988
  • Dynamic characteristics of thermally-forced stratification process in a square enclosure with a linear temperature profile at the side walls have been investigated through flow visualization experiment and numerical analysis. The experiment was performed on air with the Rayleigh numbers of order $10^5$. A particle tracer method is used for the flow visualization and to obtain a sudden linear temperature profile at the side walls copper blocks which already have a linear temperature profile are come into contact with the thin copper plates of the test section. Immediately a meridional circulation is developed and heat transfer takes place from the wall to the interior region by circulation of fluid and finally a thermal stratification is achieved. In the numerical study, QUICK scheme for convective terms, SIMPLE algorithm for pressure correction, and the implicit method for the time marching are adopted for the integration of conservation equations. Comparison of flow visualization and numerical results shows that the developing flow patterns are very similar in dynamic nature even though there is a time lag due to the inevitable time delay in setting up a linear temperature profile. For high Rayleigh numbers, the oscillatory motion is likely to take place and stratified region is extended. However, initial temperature adjustment process is much slower than that for low Rayleigh numbers.

  • PDF

Numerical and experimental investigations on the aerodynamic and aeroacoustic performance of the blade winglet tip shape of the axial-flow fan (축류팬 날개 끝 윙렛 형상의 적용 유무에 따른 공기역학적 성능 및 유동 소음에 관한 수치적/실험적 연구)

  • Seo-Yoon Ryu;Cheolung Cheong;Jong Wook Kim;Byeong Il Park
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.103-111
    • /
    • 2024
  • Axial-flow fans are used to transport fluids in relatively low-pressure flow regimes, and a variety of design variables are employed. The tip geometry of an axial fan plays a dominant role in its flow and noise performance, and two of the most prominent flow phenomena are the tip vortex and the tip leakage vortex that occur at the tip of the blade. Various studies have been conducted to control these three-dimensional flow structures, and winglet geometries have been developed in the aircraft field to suppress wingtip vortices and increase efficiency. In this study, a numerical and experimental study was conducted to analyze the effect of winglet geometry applied to an axial fan blade for an air conditioner outdoor unit. The unsteady Reynolds-Averaged Navier-Stokes (RANS) equation and the FfocwsWilliams and Hawkings (FW-H) equation were numerically solved based on computational fluid dynamics techniques to analyze the three-dimensional flow structure and flow noise numerically, and the validity of the numerical method was verified by comparison with experimental results. The differences in the formation of tip vortex and tip leakage vortex depending on the winglet geometry were compared through a three-dimensional flow field, and the resulting aerodynamic performance was quantitatively compared. In addition, the effect of winglet geometry on flow noise was evaluated by numerically simulating noise based on the predicted flow field. A prototype of the target fan model was built, and flow and noise experiments were conducted to evaluate the actual performance quantitatively.