• Title/Summary/Keyword: Unsteady F1ow

Search Result 2, Processing Time 0.023 seconds

Characteristics of Unsteady Flows in a Semi-Induction System by a Variable Volume Helmholtz Resonator (가변 체적 헬름홀츠 공진기에 의한 유사 흡기 시스템의 비정상 유동특성)

  • Kang, K.E.;Kim, K.H.;Kang, H.Y.;Koh, D.K.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.57-62
    • /
    • 2009
  • Unsteady flows in a semi-induction system was investigated to verify their characteristics. A semi-induction system was designed and made to verify the Sow characteristics in an intake system. To attain an intact wave of an intake pulse, a single semi-intake system was adopted as a test rig. The system consists of an intake pipe and a rotary valve as a pulse generator, and a variable volume Helmholtz resonator. The variable volume Helmholtz resonator was mounted in the intake pipe to enhance a breathing capacity and engine performance. The phase and amplitude of the pulsating flow in an unsteady flow system were found to affect the charging capacity significantly. The behavior of pressure wave, their phase and amplitude were investigated in various regions. Some of the results obtained from experiments were described.

  • PDF

Stabilization of Fuel F1ow in a Multi-Nozzle Combustion System Burning Natural Gas (천연가스 다노즐 열원설비의 연료 유동 안정화)

  • 박의철;차동진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.12
    • /
    • pp.1255-1265
    • /
    • 2001
  • A numerical study has been conducted to characterize the transient flow in a utility gas turbine burning natural gas. The solution domain encompasses the supply gas pressure regulator to the combustor of the gas turbine that employs multi-nozzle fuel injectors. Some results produced for verification in the present study agree suite well with the experimental ones. It is found that the total gas flow may decrease noticeably during its combustion mode change, which would be the reason of momentary combustion upset, when a reference case of opening ratios of control valves in the system is applied. Several parameters are then varied in order to make the total gas flow stable over that period of time. Results of this study may be useful to understand the unsteady behavior of combustion system burning natural gas.

  • PDF