• Title/Summary/Keyword: Unsteady Extinction Process

Search Result 4, Processing Time 0.019 seconds

An Experimental Study on the Extinction Limit Extension of Unsteady Counterflow Diffusion Flames (비정상 대향류 확산 화염의 소화 한계 확장에 대한 실험적 연구)

  • Lee Uen Do;Lee Ki Ho;Oh Kwang Chul;Lee Eui Ju;Shin Hyun Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.3 s.234
    • /
    • pp.390-401
    • /
    • 2005
  • In this study, extinction limit extension of unsteady $(CH_{4}+N_{2})$/air diffusion flames was investigated experimentally. A spatially locked flame in an opposing jet burner was perturbed by linear velocity variation, and time-dependent flame luminosity, transient maximum flame temperature and OH radical were measured over time with the high speed camera, Rayleigh scattering method and OH laser-induced fluorescence, respectively. Unsteady flames survive at strain rates that are much higher than the extinction limit of steady flames, and unsteady extinction limits extend as the slope of the strain rate increases or the initial strain rate decreases. We verified the validity of the equivalent strain rate concept by comparing the course of unsteady extinction process and steady extinction process, and it was found that the equivalent strain rate concept represents well the unsteady effect of a convective-diffusive zone. To investigate the reason of the unsteady extinction limit extension, we subtracted the time lag of the convective-diffusive zone by using the equivalent strain concept. Then the modified unsteady extinction limits become smaller than the original unsteady extinction limits, however, the modified unsteady extinction limits are still larger than the steady extinction limits. These results suggest that there exist the unsteady behavior of a diffusive-reactive zone near the extinction limit due to the chemical non-equilibrium states associated with unsteady flames.

Changes of the Flame Temperature and OH Radical in the Unsteady Extinction Process (비정상 소화 과정에서의 화염 온도 및 OH 라디칼의 변화)

  • Lee, Uen-Do;Lee, Ki-Ho;Oh, Kwang-Chul;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1557-1566
    • /
    • 2004
  • A flame extinction phenomenon is a typical unsteady process in combustion. Flame extinction is characterized by various physical phenomena, such as convection, diffusion, and the production of heat and mass. Flame extinction can be achieved by either increasing the strain rate or curvature, by diluting an inert gas or inhibitor, or by increasing the thermal or radiant energy loss. Though the extinction is an inherently transient process, steady and quasi-steady approaches have been used as useful tools for understanding the flame extinction phenomenon. Recently, unsteady characteristics of flames have been studied by many researchers, and various attempts have been made to understand unsteady flame behavior, by using various extinction processes. Representative parameters for describing flame, such as flame temperature, important species related to reactions, and chemi-luminescence of the flame have been used as criterions of flame extinction. In these works, verification of each parameter and establishing the proper criterions of the extinction has been very important. In this study, a time-dependent flame temperature and an OH radical concentration were measured using optical methods, and the instantaneous change of the flame luminosity was also measured using a high-speed ICCD (HICCD) camera. We compare the unsteady extinction points obtained by three different methods, and we discuss transient characteristics of maximum flame temperature and OH radical distribution near the extinction limit.

An Investigation of Unsteady Response of Augmented Reduced Mechanism for Numerical Simulation of CH4 Nonpremixed Flames (CH4비예혼합화염의 수치계산에 적용하기 위한 확장된 축소반응기구의 비정상 응답특성 검토)

  • Oh, Chang-Bo;Park, Jeong;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.2
    • /
    • pp.243-250
    • /
    • 2003
  • The extinction behavior and the unsteady response of augmented reduced mechanism(ARM) have been investigated by adopting an OPPDIF code and a numerical solver for the flamelet equations. By comparing the performance of the ARM based on Miller and Bowman's mechanism(MB-ARM) with that of the ARM based on GRI-Mech 3.0(GRI-3.0-ARM), it is identified that the MB-ARM is more suitable for the unsteady calculation because it is relatively less stiff than GRI-3.0-ARM during an ignition process. The steady results using the MB-ARM, which is modified to predict reasonably the extinction point of experiment, are in excellent agreement with those from full mechanism. Under the sinusoidal transient disturbances of scalar dissipation rate, the unsteady responses of the flame temperature and species concentrations using a modified MB-ARM show in very close agreement with those from full mechanism. It is presumed that above modified MB-ARM is very suitable for the unsteady simulation of turbulent flames because it gives not only a low computational cost but also a good prediction performance for flame structure, extinction point and unsteady response.

Similarity between a stagnant point diffusion flame and an evolving jet diffusion flame (전개확산제트화염과 정체점 확산화염과의 유사성)

  • Park, Jeong;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.494-502
    • /
    • 1997
  • Experiments on corresponding jet flames with stagnant point diffusion flames have been carried out in initial injection periods. A compensated measurement of maximum flame temperature, which is based on the ion signal, has been employed to inspect flame responses to time-varying strain rates. The flame responses are obtained at two conditions for the slowly time-varying strain rate and the case of flame extinction, and analyzed to confirm similarity between a stagnant point diffusion flame and an evolving jet diffusion flame. Nonsteady effects are addressed via the comparison between several time scales. The time variation with low strain rates, in which illustrates the flame behavior of the upper branch far from extinction in the well-known S-curve, is confirmed to produce a quasi-steady flame response through the nonsteady experiments. The time variation with strain rates in the case of flame extinction indicates an unsteady effect of flame response. It is therefore found that the flame responses near jet tip depend on time histories of characterized strain rates in the developing process.