• 제목/요약/키워드: Unsteady CFD

검색결과 395건 처리시간 0.023초

Unsteady aerodynamic forces on a vibrating long-span curved roof

  • Ding, Wei;Uematsu, Yasushi;Nakamura, Mana;Tanaka, Satoshi
    • Wind and Structures
    • /
    • 제19권6호
    • /
    • pp.649-663
    • /
    • 2014
  • The present paper discusses the characteristics of unsteady aerodynamic forces on long-span curved roofs. A forced vibration test is carried out in a wind tunnel to investigate the effects of wind speed, vibration amplitude, reduced frequency of vibration and rise/span ratio of the roof on the unsteady aerodynamic forces. Because the range of parameters tested in the wind tunnel experiment is limited, a CFD simulation is also made for evaluating the characteristics of unsteady aerodynamic forces on the vibrating roof over a wider range of parameters. Special attention is paid to the effect of reduced frequency of vibration. Based on the results of the wind tunnel experiment and CFD simulation, the influence of the unsteady aerodynamic forces on the dynamic response of a full-scale long-span curved roof is investigated on the basis of the spectral analysis.

비선형 피스톤 이론과 오일러 방정식을 이용한 쐐기형 에어포일의 초음속/극초음속 비정상 공력해석 (SUPERSONIC/HYPERSONIC UNSTEADY AERODYNAMIC ANALYSIS OF A WEDGE-TYPE AIRFOIL USING NONLINEAR PISTON THEORY AND EULER EQUATIONS)

  • 김동현
    • 한국전산유체공학회지
    • /
    • 제10권3호
    • /
    • pp.1-8
    • /
    • 2005
  • In this study, unsteady aerodynamic analyses of a wedge-type airfoil based on nonlinear piston theory and Euler equations have been performed in supersonic and hypersonic flows. The third-order nonlinear piston theory (NPT) to calculate unsteady lift and moment coefficients is derived and applied in the time-domain. Also, unsteady flow quantities are obtained from the two-dimensional time-dependent Euler equations. For the CFD based unsteady aerodynamic analyses, an arbitrary Lagrangean-Eulerian (ALE) formulation for the Euler equations is used to calculate flow fluxes in the computational flow field with moving boundaries. Numerical comparisons for unsteady lift and moment coefficients are presented between NPT and Euler approaches. The results show very good agreements in the high supersonic and hypersonic flows. It means that the present NPT can be efficiently used to predict unsteady aerodynamic forces ol wedge type airfoils with dynamic motions in the high supersonic and hypersonic flow regimes.

상용 CFD코드를 이용한 횡류홴 공력소음 특성 해석 (Analysis of the aeroacoustic characteristics of cross-flow fan using commercial CFD code)

  • Jeon, Wan-Ho;Gi, Jeong-Mun
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.334.1-334
    • /
    • 2002
  • In this study, a cross-flow fan system used in indoor unit of the split-type air conditioner is analyzed by computational simulation. A commercial CFD code - Fluent - is used to calculate the performance and its unsteady flow characteristics. The unsteady incompressible Wavier-Stokes equations are solved using a sliding mesh technique on the interface between rotating fan region and the outside. The acoustic pressure is calculated by using Ffowcs-Williams and Hawkings equation. (omitted)

  • PDF

미끄럼 격자를 이용한 HAWT 시스템 주위의 비정상 유동장 해석 (Unsteady Flow Analysis Around a HAWT System Using Sliding Mesh Technique)

  • 이치훈;김상곤;조창열
    • 한국항공우주학회지
    • /
    • 제39권3호
    • /
    • pp.201-209
    • /
    • 2011
  • NREL Phase VI 수평축 풍력터빈 주위의 3차원 유동에 대하여 미끄럼 격자 기법을 사용한 비정상 RANS 해석을 수행하였다. 블레이드/타워의 간섭영향을 해석하기 위하여 로터단일과 로터/타워/나셀의 2가지 해석 모델을 구축하였다. 로터/타워/나셀의 해석 결과를 NREL의 실험데이터와 비교하여 CFD 해석모델의 유용성을 확인하였다. 두 모델에 의한 해석 결과의 비교를 통하여 비록 상풍형 풍력터빈으로서 작기는 하지만 타워/나셀의 영향이 확실히 나타나는 것을 확인하였다. 다른 가시화 결과와 토크를 포함한 적분 공력하중 등도 구축한 CFD 모델의 비정상 유동해석 능력이 효과적임을 보여주고 있다.

EDISON CFD를 이용한 원형 실린더 주위의 비정상 유동 해석 (Unsteady flow analysis around a circular cylinder using EDISON CFD)

  • 김재민;진성호;김택기;김문상
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제1회(2012년)
    • /
    • pp.61-64
    • /
    • 2012
  • 원형 실린더 주위의 비정상 유동은 공학적으로 매우 중요한 유동 현상으로서 2차원 원형 실린더 주위의 비정상 유동 현상인 와류 흘림에 관해 수치적으로 계산해 보고 실제 유동 현상과 비교해 본다. 또한 실린더 주위 유동의 와류 흘림 현상이 공학적인 측면에서 어떠한 중요한 역할을 하는지 고찰해 본다.

  • PDF

EDISON_전산열유체를 활용한 풍력발전기 타워의 후류 불안정성 억제에 관한 수치연구 (NUMERICAL ANALYSIS FOR SUPPRESSING UNSTEADY WAKE FLOW ON WIND TURBINE TOWER USING EDISON_CFD)

  • 김수용;진도현;이근배;김종암
    • 한국전산유체공학회지
    • /
    • 제18권1호
    • /
    • pp.36-42
    • /
    • 2013
  • The performance of the wind turbine is determined by wind speed and unsteady flow characteristics. Unsteady wake flow causes not only the decline in performance but also structural problems of the wind turbine. In this paper, conceptual designs for the wind turbine tower are conducted to minimize unsteady wake flow. Numerical simulations are performed to inspect the shape effect of the tower. Through the installation of additional structures at the rear of the tower, the creation of Karman vortex is delayed properly and vortex interactions are reduced extremely, which enhance the stability of the wind turbine. From the comparative analysis of lift and drag coefficients for each structure, it is concluded that two streamwise tips with a splitter plate have the most improved aerodynamic characteristics in stabilizing wake flow.

Numerical investigation of the unsteady flow of a hybrid CRP pod propulsion system at behind-hull condition

  • Zhang, Yuxin;Cheng, Xuankai;Feng, Liang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.918-927
    • /
    • 2020
  • Flows induced by hybrid CRP pod propulsion systems (CRP-POD) are fundamentally characterized by unsteadiness. This work presents a numerical study on the unsteady flow of a CRP-POD at behind-hull condition based on CFD (Computational Fluid Dynamics). Unsteady RANS method is adopted, coupled with SST k-u turbulence model and sliding mesh method. The propeller thrusts and torques obtained by CFD is validated by model tests and acceptable agreements are obtained. The time histories of shingle-blade loads and pressures near the hull surface are recorded for the analysis of unsteady flow features. The cases of forward propeller alone and aft propeller alone are also computed to distinguish the hull-propeller interaction and propeller-propeller interaction. The results show the blade loads of both forward and aft propellers strongly fluctuate with phase angles. For the forward propeller, the blade load fluctuation is mainly governed by the hull-propeller interaction, while the aft blade load is remarkably affected by the propeller-propeller interaction in terms of the load average and fluctuation pattern. The fields of pressure, vorticity and velocity are also analyzed to reveal the unsteady flow features.

비정상 CFD 해석기법을 활용한 5 MW 해상풍력터빈 극한 설계하중조건 해석 (Extreme Design Load Case Analyses of a 5 MW Offshore Wind Turbine Using Unsteady Computational Fluid Dynamics)

  • 김동현;이장호;트란탄도안;곽영섭;송진섭
    • 풍력에너지저널
    • /
    • 제5권1호
    • /
    • pp.22-32
    • /
    • 2014
  • The structural design of a wind turbine must show the verification of the structural integrity of all load-carrying components. Also, design load calculations shall be performed using appropriate and accurate methods. In this study, advanced numerical approach for the calculation of design loads based on unsteady computational fluid dynamics (CFD) is presented considering extreme design load conditions such as the extreme coherent gust (ECG) and the 50 year extreme operating gust (EOG). Unsteady aerodynamic loads are calculated based on Reynolds average Navier-Stokes (RANS) equations with shear-stress transport k-ω(SST k-ω) turbulent model. A full three-dimensional 5 MW offshore wind-turbine model with rotating blades, hub, nacelle, and tower configuration is practically considered and its aerodynamic interference effect among blades, nacelle, and tower is also accurately considered herein. Calculated blade loads based on unsteady CFD method with respect to blade azimuth angle are compared with those by NREL FAST code and physically investigated in detail.

Aerodynamic and Aeroelastic Tool for Wind Turbine Applications

  • Viti, Valerio;Coppotelli, Giuliano;De Pompeis, Federico;Marzocca, Pier
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권1호
    • /
    • pp.30-45
    • /
    • 2013
  • The present work focuses on the unsteady aerodynamics and aeroelastic properties of a small-medium sized wind-turbine blade operating under ideal conditions. A tapered/twisted blade representative of commercial blades used in an experiment setup at the National Renewable Energy Laboratory is considered. The aerodynamic loads are computed using Computational Fluid Dynamics (CFD) techniques. For this purpose, FLUENT$^{(R)}$, a commercial finite-volume code that solves the Navier-Stokes and the Reynolds-Averaged Navier-Stokes (RANS) equations, is used. Turbulence effects in the 2D simulations are modeled using the Wilcox k-w model for validation of the CFD approach. For the 3D aerodynamic simulations, in a first approximation, and considering that the intent is to present a methodology and workflow philosophy more than highly accurate turbulent simulations, the unsteady laminar Navier-Stokes equations were used to determine the unsteady loads acting on the blades. Five different blade pitch angles were considered and their aerodynamic performance compared. The structural dynamics of the flexible wind-turbine blade undergoing significant elastic displacements has been described by a nonlinear flap-lag-torsion slender-beam differential model. The aerodynamic quasi-steady forcing terms needed for the aeroelastic governing equations have been predicted through a strip-theory based on a simple 2D model, and the pertinent aerodynamic coefficients and the distribution over the blade span of the induced velocity derived using CFD. The resulting unsteady hub loads are achieved by a first space integration of the aeroelastic equations by applying the Galerkin's approach and by a time integration using a harmonic balance scheme. Comparison among two- and three- dimensional computations for the unsteady aerodynamic load, the flap, lag and torsional deflections, forces and moments are presented in the paper. Results, discussions and pertinent conclusions are outlined.

상용 CFD코드를 이용한 냉각홴 공력소음의 발생 및 방사 해석 (Analysis of the Generation and Radiation of the Fan Noise by Using Commercial CFD Code)

  • 전완호
    • 한국유체기계학회 논문집
    • /
    • 제5권1호
    • /
    • pp.13-19
    • /
    • 2002
  • In the present study, a numerical simulation is performed for the flow through a cooling fan. The computation was performed by using commercial code, STAR-CD. A rotating fan was simulated by rotational motions using MRF (Multiple Rotating Reference Frame) in a steady-state analysis and sliding interface (rotating meshes) in an unsteady-state analysis. The results of numerical computation were in good agreement with experimental data. In order to calculate the acoustic signal, the unsteady flow-field was firstly calculated. The acoustics of the fan is calculated by using acoustic analogy based on the unsteady flow-field. The predicted acoustic signal shows the characteristics of the uneven bladed-fan.