• Title/Summary/Keyword: Unstable Torsional Vibration

Search Result 9, Processing Time 0.021 seconds

Unstable Torsional Vibration on the Propulsion Shafting System with Diesel Engine Driven Generator (디젤엔진 구동 발전기를 갖는 추진축계의 불안정한 비틀림진동)

  • 이돈출
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.936-942
    • /
    • 1999
  • Unstable torsional vibration on the marine ship's propulsion shafting system with diesel engine occurred due to a slippage of multi-friction clutch which was installed between increasing gear and shaft generator. In this paper, the mechanism of this vibration was verified via torsional, whirling, axial and structural vibration measurements of shafting system and noise measurement of gear box. And it was also identified by the theoretical analysis method.

  • PDF

A Study on the Torsional Vibration Measurement of the Horizontal Shaft with Disks (단을 가진 수평축의 비틀림진동 측정에 관한 연구)

  • 박일수;안찬우;김중완
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.3-8
    • /
    • 1997
  • This parer was presented for the experimental results of torsional vibrations of the horizontal rotating shaft with three disks. The torsional vibrations meter used is a laser system for non-contact measurement of torsional angular vibration velocity and torsional angular vibration displacement. The distance between the disks war changed; the one that had 76mm of disk distance war called basic model, and another that had 106mm of disk distance wide model, and other that had 46mm of disk distance narrow model. In each model, outer diameter of disk was 40mm. And 45mm, or 50mm was also used to extend the effective range of frequencies. The angula vibration displacement and the angular vibration velocity in its torsional vibration were measured to obtain the stable and the unstable regions.

  • PDF

Digital Optimal Contorl of Servomotor System Considering Torsional Vibration Characteristics (비틀림 진동특성을 고려한 서어보모터계의 디지털 최적제어)

  • Jo, Seung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.4
    • /
    • pp.52-60
    • /
    • 1989
  • In order to control the transient torsional vibration of rotational shaft system, the torsional stiffness of it has been taken into account in modelling the plant. In this paper the observer and controller has been designed in two ways. One is to consider the torsional stiffness and the other is to idealize the rotational shaft as rigid body. The third order observer considering torsional stiffness shows stable response on computer simulation. When the observer is designed on assumption of the rotational shaft being rigid body, the reduced order observer shows stable response whereas the full order observer shows unstable response.

  • PDF

A Study on the Transient Torsional Vibration of 4 Stroke Marine Diesel Engine (선박용 4행정 디젤엔진의 과도비틀림진동에 관한 연구)

  • Lee, D. C.;J. D. Yu;H. J. Jeon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.312.2-312
    • /
    • 2002
  • Theoretical analysis of transient torsional vibration was started from early 1960's for high power synchronous motor application. Especially, its simulation and measuring techniques in marine engineering field have been steadily studied by manufacturers of flexible coupling and designers of four stroke marine diesel engine. In this paper, the simulation method of transient torsional vibration of four stroke marine diesel engine using the Newmark method are introduced. (omitted)

  • PDF

Coupled Vibration of Lateral and Torsional Vibrations in a Rotating Shaft Driven through a Universal Joint - Derivation of Equations of Motion and Stability Analysis - (유니버셜 조인트에 의해 구동되는 회전축의 횡진동과 비틀림진동의 연성진동 - 운동방정식의 유도 및 안정성해석 -)

  • 김정렬;전승환;이돈출
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.461-465
    • /
    • 1999
  • This paper presents theoretical analyses for unstable vibrations caused by the couple of bending and torsion in a rotating shaft driven through a universal joint. A driving shaft is assumed to be rigid and to rotate with a constant angular velocity. The driven shaft system consists of a flexible shaft with a circular section and a symmetrical rotor attached at a point between the shaft ends. Equations of motion derived hold with an accuracy of the second order of shaft deformations, and are analyzed by the asymptotic method. The vibrations become unstable when the driving shaft rotates with the angular velocity to be approximately equal to half of the sum of the natural frequencies for whirling and torsional vibrations.

  • PDF

A Study on the Stability Analysis and Non-linear Forced Torsional Vibration for the Dngine Shafting System with Viscous Damper (점성댐퍼를 갖는 엔진 축계의 안정성 해석 및 비선형 비틀림강제진동)

  • 박용남;하창우;김의간;전효중
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.282-287
    • /
    • 1996
  • The non-linear torsional vibrations of the propulsion shafting system with viscous damper are considered. The motion is modeled by non-linear differential equations of second order. the equivalent system is modeled by two mass softening system with Duffing's oscillator. The steady state response of a equivalent system is analyzed for primary resonance only. Harmonic balance method as a non-linear vibration analysis technique is used. Jump phenomena are explained. The primary unstable region obtained by the Mathieu equation is investigated. Both theoretical and measured results of the propulsion shafting system are compared with and evaluated. As a result of comparisons with both data, it was confirmed that Duffing's oscillator can be used as a analysis method in the modeling of the propulsion shafting system attached viscous damper with non-linear stiffness.

  • PDF

Nonlinear Vibration Phenomenon for the Slender Rectangular Cantilever Beam (얇은 직사각형 외팔보의 비선형 진동현상)

  • Park, Chul-Hui;Cho, Chong-Du;Piao, Chang-Hao
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1314-1321
    • /
    • 2004
  • The non-linear responses of a slender rectangular cantilever beam subjected to lateral harmonic base-excitation are investigated by the 2-channel FFT analyzer. Both linear and nonlinear behaviors of the cantilever beam are compared with each other. Bending mode, torsional mode, and transverse mode are coupled in such a way that the energy transfer between them are observed. Especially, superharmonic, subharmonic, and chaotic motions which result from the unstable inertia terms in the transverse mode are analyzed by the FFT analyzer The aim is to give the explanations of the route to chaos, i.e., harmonic motion \longrightarrow superharmonic motion \longrightarrow subharmonic motion \longrightarrow chaos.

Non-linear Shimmy Analysis of a Nose Landing Gear with Free-play (유격을 고려한 노즈 랜딩기어의 비선형 쉬미 해석)

  • Yi, Mi-Seon;Hwang, Jae-Up;Bae, Jae-Sung;Hwang, Jae-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.10
    • /
    • pp.973-978
    • /
    • 2010
  • In this paper, we studied the shimmy phenomena of an aircraft nose landing gear considering free-play. Shimmy is a self-excited vibration in lateral and torsional directions of a landing gear during either the take-off or landing. This phenomena is caused by a couple of conditions such as low torsional stiffness of the strut, friction and free-play in the gear, wheel imbalance, or worn parts, and it may make an aircraft unstable. Free-play non-linearity is linearized by the described function for a stability analysis in a frequency domain, and time marching is performed using the fourth-order Runge-Kutta method. We performed the numerical simulation of the nose landing gear shimmy and investigated its linear and nonlinear characteristics. From the numerical results, we found limit-cycle-oscillations at the speed under linear shimmy speed for the case considering free-play and it can be concluded that the shimmy stability can be decreased by free-play.

Non-linear Shimmy Analysis of a Nose Landing Gear with Friction (마찰을 고려한 노즈 랜딩기어의 비선형 쉬미 해석)

  • Yi, Mi-Seon;Bae, Jae-Sung;Hwang, Jae-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.7
    • /
    • pp.605-611
    • /
    • 2011
  • Shimmy is a self-excited vibration in lateral and torsional directions of a landing gear during either the take-off or landing. It is caused by a couple of conditions such as a low torsional stiffness of the strut, a free-play in the landing gear, a wheel imbalance, or worn parts, and it may make the aircraft unstable. This study was performed for an analysis of the shimmy stability on a small aircraft. A nose landing gear was modeled as a linear system and characterized by state-equations which were used to analyze the stability both in the frequency and time-domain for predicting whether the shimmy occurs and investigating a good design range of the important parameters. The root-locus method and the 4th Runge-Kutta method were used for each analysis. Because the present system has a simple mechanism using a friction to reinforce the stability, the friction, a non-linear factor, was linearized by a describing function and considered in the analysis and observed the result of the instability reduction.