• Title/Summary/Keyword: Unstable Flame

Search Result 89, Processing Time 0.02 seconds

An Experimental Study on the Flame Dynamics in Ducted Combustor (덕트형 연소기에서 화염의 동특성에 관한 실험적 연구)

  • Jeong, Chanyeong;Kim, Taesung;Song, Jinkwan;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.121-131
    • /
    • 2013
  • The characteristics of flame dynamics occurring near the bluff body was experimentally investigated in a model combustor with V-gutter bluff body. Measurements of chemiluminescence with high speed camera and PIV were performed for visualization of flame structure. Flashback occurs due to the change of pressure gradient in the combustor, and the flashback distance depends on equivalent ratio. Unstable flames can be classified into three types depending on the flashback distance and structure. When the flame goes over the bluff body, an unusual flame structure occurs at the front of the bluff body. Re-stabilization takes place as the flame moves downstream of the combustor. This process is supported by a strong vortex structure behind the bluff body.

A Numerical Study on Combustion Characteristics for Various Configurations of Oxy-PC Burners (전산유동 해석을 이용한 Oxy-PC 버너 형상 변화에 따른 화염 특성 연구)

  • Chae, Taeyoung;Ryu, Changkook;Yang, Won
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.43-46
    • /
    • 2012
  • The oxygen concentration of primary oxidizer is decided under 10% due to flammable risk. It can be a spontaneous combustion inside burner or tube if the excess oxygen is added to primary oxidizer in Oxy-PC burner. In this case, the rest oxygen which can not be injected to primary oxidizer should be injected to another port. If added it to a second oxidizer, the ignition is unstable at outlet of burner. Accordingly an extra lancing port is needed to insert into the burner unlike other common air mode. And the flame formation and combustion characteristic differ from lancing port position. Therefore we observed flame formation which has stable combustion characteristic according to the shape and position of lancing port.

  • PDF

Characteristics of Low-Frequency Combustion-driven Oscillation in a Surface Burner (표면연소기의 저주파 연소진동음의 특성)

  • 한희갑;이근희;권영필
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.991-997
    • /
    • 2000
  • The objective of this study is to examine the onset condition and the frequency characteristics of the low-frequency combustion oscillation in a surface burner. For this purpose, extensive parametric studies have been performed experimentally and the effects of size of each section, the equivalence ratio, and the entrance velocity on oscillatory behavior explored. The experimental results were discussed in comparison with the other combustors associated tilth the low-frequency combustion oscillation. The combustion mode is driven at high combustion rate by the lift of unstable flame near the lower limit of the combustible equivalence ratio. The oscillation frequency is dependent not on the burner geometry but on the equivalence ratio and the combustion load. Low-frequency combustion mode was formed to be divided into two different modes, named C1 and C2 respectively. Two modes occurred individually, simultaneously or transitionally according to the equivalence ratio and combustion load. The characteristics of low-frequency oscillation is different from each other depending on the type of combustors. The surface burner has also its own characteristics of low -frequency oscillation.

  • PDF

A Study on the Effects of Induced Mixture Flows and the Stratified Charge for a Lean Burn (희박연소를 위한 혼합기의 성층급기와 유동에 관한 연구)

  • 전대수;이태원;윤수한;하종률
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 2000
  • In the present study, the IDI-type constant volume chamber, which utilizes the indirect injection stratified charge method, is used to solve several problems including misfires and cycle-variations caused by unstable initial ignitions. A subchamber has been used to make an ignitable mixture under the low mean equivalence ratio. After burned in the subchamber, the flame jet getting through the passage hode enters the main chamber and burns the lean charge. There are many factors which affect the combustion characteristics of the indirect injection stratified engine. The passage hole angle is the most important since it determines the direction of flame flows into the main chamber. In the present study, we measured the combustion pressure, and the wall temperature, and computed the heat flux through the cylinder wall in order to understand the combustion characteristics depending on passage hole angle and the equivalence ratio.

  • PDF

THE CATALYTICALLY SUPPORTED COMBUSTOR FOR LEAN MIXTURE (촉매에 의해 안정화된 희박 예혼합기의 연소)

  • Seo, Yong-Seok;Gang, Seong-Gyu;Sin, Hyeon-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.59-67
    • /
    • 1998
  • The aim of this study is to investigate advantages that the catalytically supported combustor can have. For this purpose, the catalytic combustor was prepared which consisted of the catalyst bed and the thermal combustor at the downstream of the catalyst bed. The catalyst bed consisted of two-stage. Pd catalyst was installed in the first stage of the catalyst bed, and Pt catalyst was placed in the second stage. Results showed that the catalytically supported combustion had some advantages. One was that auto-ignition occurred in the thermal combustor. This can give merit that an igniter is not necessary to start flame ignition. Other was that the catalytically supported combustion was stable for lean mixture. When combustion of lean mixture was not supported by surface reaction it became unstable so that big combustion noise was created. Therefore, it is desirable to support flame by catalytic surface reaction to obtain the stable combustion of lean mixture.

  • PDF

Characteristics of the Spray and Combustion in the Liquid Jet (수직 분사되는 연료제트의 분무 및 연소특성)

  • 윤현진;문수연;손창현;이충원
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.107-115
    • /
    • 2002
  • In this paper, spray and combustion characteristics of a liquid-fueled ramjet engine were experimentally investigated. The spray penetrations were measured to clarify the spray characteristics of a liquid jet injected transversely into the subsonic vitiated airstream, which Is maintained a high velocity and temperature. The spray penetrations are increased with decreasing airstream velocity, increasing airstream temperature, and increasing air-fuel momentum ratio. To compensate our results of penetrations, the new experimental equation were modified from Inamura's equation. In the case of insufficient penetration, the combustion phenomenon in ram-combustor were unstable. Therefore, the sufficient penetration must be considered to make a stable flame.

Numerical Simulation of Detonation with Detailed H2/O2 Reaction Mechanisms

  • Kumar, P.Pradeep;Choi, Jeong-Yeol
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.169-174
    • /
    • 2014
  • Detonation propagation studies is recently getting more attention in these days for its feasibility in aerospace application. Another motivation for this study is the safety concern in industries, since the detonation can cause failure to the mechanical components particularly when the flame accelerates within a pipe or tubes. In this study we numerically simulated a Moderately unstable detonation case with various grid systems and fluid dynamic length scales and have compared in the contents. Moderately Unstable detonation case was selected for this study and detailed Hydrogen-Air Reaction Mechanisms proposed by Jachimowski was used in this study with N2 as inert species.

  • PDF

Characteristics of Flame Structure and $NO_X$ Emission in a Dump Gas Turbine as Fuel-Air Mixing Degrees (희박 예혼합 정도에 따른 모형 덤프 가스터빈 연소기의 화염 구조와 $NO_X$배출 특성)

  • Ryu, Hye-Yeon;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3452-3457
    • /
    • 2007
  • Experiments were carried out in an atmopheric pressure, lab-scale gas turbine combustor to see the effect of partial premixing on unstable flame structure and $NO_X$ emission characteristics. The swirl angle is 45 deg., fuel-air mixing degrees were varied 0, 50, and 100% respectively at equivalence ration ranging from 0.53 to 0.79. The evaluation of phased-locked OH chemiluminescence images were acquired with an ICCD. $NO_X$ emission characteristics were also investigated at each experimental condition. The effect of the fuel-air mixing degree on the flame structure was obtained from phase-locked $OH^*$ images. And it was obtained from local heat release characteristics that the information about the region which the combustion instability was amplified or damped. It also could be confirmed that ${\sigma}$ has greatly influence on $NO_X $emission characteristics at lean regimes. It would be expected that it could provide invaluable data for understanding the mechanism of combustion instability

  • PDF

2-Parameter High Frequency Combustion Instability Model (2-파라메타 모델에 의한 고주파 연소불안정 해석)

  • 조용호;윤웅섭
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.2
    • /
    • pp.74-83
    • /
    • 1997
  • The definition of burning admittance and conventional n-$\tau$ stability rating technique are combined to investigate the high frequency combustion instabilities inside the cylindrical combustion chamber. Perturbed flow variables are written as the sum of fluctuating and time-averaged mean quantities on the assumption that the terms of the order higher than unity are sufficiently small, hence linearized governing equations could be formulated. Chamber admittances up and downstream of the flame front calculated with appropriate boundary conditions result in the burning admittance and corresponding n-$\tau$ neutral stability curve. Configurational and operational design factors are tested to detect the unstable wave-induced LOX-RP1 combustion instabilities. Operational design factors, e.g. pressure or O/F ratio, appear less influential to drive high frequency instability while the location of the flame front and configurational factors enhance or deteriorate the stabilities strongly. Conclusively, LOX-RP1 combustion inside the cylindrical combustion chamber is apt to be unstable against long residence time and shortened chamber length.

  • PDF

Evaluation of Combustion Instability in a Model Gas Turbine Adopting Flame Transfer Function and Dynamic Mode Decomposition (화염 전달함수 및 DMD 기법을 이용한 모형 가스터빈의 연소불안정성 평가)

  • Son, Jinwoo;Sohn, Chae Hoon;Yoon, Jisu;Yoon, Youngbin
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.2
    • /
    • pp.1-8
    • /
    • 2017
  • To evaluate the combustion instability of a gas turbine combustor, the DMD technique was applied. The mode frequency results for each fuel composition were compared with FFT(Fast Fourier Transform) results. The damping coefficient, which is a quantitative parameter for combustion instability, was evaluated for 5 experimental cases. The flame transfer function (FTF) was calculated in the most unstable test case. In deriving the FTF, gain and phase were calculated using DMD technique. As a result of the analysis of the OH radical perturbation of the DMD, the heat release fluctuation was the highest at 100 Hz, at which the highest value of gain is observed. The frequency of FFT and FTF were different. In order to clarify the reason for this, FTF for various resonance frequencies was performed and it shows that the pattern of gain was similar to FFT.