• Title/Summary/Keyword: Unsaturated seepage analysis

Search Result 61, Processing Time 0.027 seconds

Stochastic Seepage Analysis of Dam (확률론적 댐 침투거동 해석)

  • Cho Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.4
    • /
    • pp.73-83
    • /
    • 2006
  • Seepage analysis through unsaturated zone based on the theory of unsaturated flow is commonly performed to evaluate dam safety. However, the concepts of unsaturated soil behavior have not been transferred into the hands of practicing geotechnical engineers since the problems involving unsaturated soils often have the appearances of being extremely complex. There is variability and uncertainty associated with the unsaturated hydraulic properties that in turn will lead to variability in predicting unsaturated soil behavior such as seepage rate and the pore water pressure distribution. In this paper, measurements of the soil-water characteristic curve and saturated hydraulic conductivity for the core material of dam were conducted. Then, finite element stochastic analysis was used to capture the effect of unsaturated hydraulic properties on the seepage behavior of dam. It is observed that the amount of seepage increases, as the values of unsaturated soil parameters a and n increase. The values of m and p showed opposite trend.

An Equation to Estimate Steady-State Seepage Rate of Rockfill Dam (사력댐의 정상상태 침투량 예측식)

  • Lee, Jong-Wook;Lim, Heui-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.69-80
    • /
    • 2011
  • In this study unsaturated seepage analysis of 8 large rockfill dam managed by Korea Water Resources Corporation, were carried out, and the seepage rate of rockfill dam was analyzed by changing reservoir water level, shape, saturated and unsaturated seepage properties of core zone to present an equation to estimate steady-state seepage rate of rockfill dam. This equation considers unsaturated seepage flow and is applicable to domestic large scale Rockfill dam with the height of more than 50m. Estimated values by the proposed equation are greater than those by the method of Sakamoto (1998), which does not consider unsaturated seepage flow. The difference of estimated values increases with the lower reservoir water level and decreases with the higher reservoir water level. We can be sure that the comparison between the measured seepage rate and the estimated seepage rate by the proposed equation for the existing rockill dam was well-matched. The proposed equation is close to the actual phenomenon compared with the existing equations (Sakamoto, 1998; Chapuis and Aubertin, 2001) because it is based on the results of unsaturated seepage analysis of dams, has upstream and downstream slopes in the range of 1Vertical: (0.2~0.3)Horizontal.

Study on Seepage Behavior of Concrete Faced Gravel-Fill Dam (표면차수벽형사력댐의 침투거동에 관한 연구)

  • Cho, Sung-Eun;Kim, Ki-Young;Park, Han-Gyu;Ha, Ik-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.836-841
    • /
    • 2008
  • CFRD (Concrete Faced Rockfill Dam) has been world-widely constructed due to a lot of advantages compared with rockfill dam and recently, sand/gravel materials, instead of crushed rock materials, are also utilized as a main rockfill material to overcome geological and environmental problems. In this paper, the process of water infiltration into the originally unsaturated sand/gravel-fill dam is studied using two-dimensional saturated-unsaturated seepage theory. According to the results of seepage analysis, if the effective drainage zone is installed in the dam, the reservoir water infiltrate into the dam along a downward flow path towards the lower drainage area. The main body constructed with sand/gravel materials, therefore, remains unsaturated.

  • PDF

Estimation of Seepage Rate through Core Zone of Rockfill Dam (중심코어형 사력댐의 코어죤 침투량 예측기법)

  • Lee, Jong-Wook;Lim, Heui-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.4
    • /
    • pp.47-58
    • /
    • 2010
  • Seepage rate through the core zone of rockfill dam, estimated from graphical technique and the equation by Sakamoto (1998), is different from the real condition because of neglecting unsaturated flow. With existing method to estimate total seepage rate, it is difficult to understand the tendency of total seepage rate changes by reservoir water level change. Steady state seepage rate and the factors affecting the time needed to attain to changes of reservoir water level and saturated hydraulic conductivity and unsaturated hydraulic properties of core material are analysed thorough the 2-D steady and unsteady state seepage analyses of Soyanggang dam. Numerical results revealed that the seepage rate can be expressed by the linear equation form and the value of unsaturated soil parameter n is the most important factor affecting the seepage rate and the time needed to attain steady state. The estimation method presented in this study can be used by the designer and the personnel of dam safety for convenient estimation of seepage rate and quantitative analysis of measured seepage rate without 2-D and 3-D numerical analyses.

Sensitivity of Seepage Behavior of Dam to Unsaturated Soil Properties (불포화 수리특성에 대한 댐체 침투 거동의 민감도 분석)

  • Cho Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.3
    • /
    • pp.119-131
    • /
    • 2005
  • Seepage analysis through unsaturated zone based on the theory of unsaturated flow is commonly performed to evaluate dam safety. However, the concepts of unsaturated soil behavior have not been transferred into the hands of practicing geotechnical engineers since the problems involving unsaturated soils often have the appearances of being extremely complex. The behavior of dam such as seepage rate and the pore water pressure distribution is different according to the unsaturated hydraulic properties, but nevertheless simply assumed properties have been used due to insufficient data from domestic soils. In this paper, the effect of unsaturated hydraulic properties on the behavior of dam was studied through a series of numerical analyses, and then the results were discussed. It is observed that water table moves at a (aster rate, as the values of unsaturated soil parameter a and n increase. The value of m showed opposite trend. The sensitivity calculated using the approximation form showed maximum values near the water table. And the value of n that is related to the slope of soil water characteristic curve gives greatest influence on the change of sensitivity with time.

Studies on Seepage Flow Analysis through Sea Dike (防潮堤의 浸透流 解析에 관한 硏究)

  • Kim, Gwan-Jin;Jo, Byeong-Jin;Yun, Chung-Seop
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.1
    • /
    • pp.87-99
    • /
    • 1992
  • A mathematical model, UNSATR which predicts the seepage flow through the body of dike especially under the tidal fluctuation has been developed. This model has been revised from UNSAT2 model which was developed on the basis of the saturated-unsaturated theory by Neuman. UNSATR has been verified and applied to the hydraulic model in order to estimated the seepage quantity, the formation of free water surface etc. The results lead to the following conclusions : 1. Seepage rates between the mathematical model and hydraulic model experiment are very similar to each other both in constant and transient water level conditions. 2. The lapsed time to be steady state of the free water surface becomes late as the tidal levels are relatively low mainly due to the seepage flow from the unsaturated zone of the body of dike. 3. Under the transient state of water levels, owing to the flow from the unsaturated domain, streamlines crossing to the free water surface are found and time lag during a falling tide may allow the free water surface inside the body of dike to stand at a high level than the outside water level. 4. The utility and validity of UNSATR model are convinced when the analyses on seepage problems through the porous embankment of the soil structures on the conditions of the steady and unsteady states are carried out.

  • PDF

A Case Study of Rainfall-Induced Slope Failures on the Effect of Unsaturated Soil Characteristics (불포화 지반특성 영향에 대한 강우시 사면붕괴의 사례 연구)

  • Oh, Seboong;Mun, Jong-Ho;Kim, Tae-Kyung;Kim, Yun Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3C
    • /
    • pp.167-178
    • /
    • 2008
  • Rainfall-induced slope failures were simulated by seepage and stability analyses for actual slopes of weathered soils. After undisturbed sampling and testing on a specimen of unsaturated conditions, a seepage analysis was performed under actual rainfall and it was found that the pore water pressure increased at the boundary of soil and rock layers. The safety factor of slope stability decreased below 1.0 and the failure of actual slope could be simulated. Under design rainfall intensity, the seepage analysis could not include the effects of the antecedent rainfall and the rainfall duration. Due to these limitations, the safety factor of slope stability resulted in above 1.0, since the hydraulic head of soil layers had not be affected significantly. In the analysis of another slope failure, the parameters of unsaturated conditions were evaluated using artificial neural network (ANN). In the analysis of seepage, the boundary of soil and rock was saturated sufficiently and then the safety factor could be calculated below 1.0. It was found that the failure of actual slope can be simulated by ANN-based estimation.

Study on Seepage Behavior of Concrete Faced Gravel-Fill Dam with Cracked Face Slab (차수벽에 균열이 발생한 표면차수벽형사력댐의 침투거동 연구)

  • Cho, Sung-Eun;Park, Han-Gyu;Im, Eun-Sang;Kim, Ki-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.866-873
    • /
    • 2009
  • CFRD (Concrete Faced Rockfill Dam) has been world-widely constructed due to a lot of advantages compared with rockfill dam and recently, sand/gravel materials, instead of crushed rock materials, are also utilized as a main rockfill material to overcome geological and environmental problems. In this paper, the process of water infiltration into the originally unsaturated sand/gravel-fill dam is studied using two-dimensional saturated-unsaturated seepage theory. According to the results of seepage analysis, if the effective drainage zone is installed in the dam, the reservoir water infiltrate into the dam along a downward flow path towards the lower drainage area. The main body constructed with sand/gravel materials, therefore, remains unsaturated.

  • PDF

LE analysis on unsaturated slope stability with introduction of nonlinearity of soil strength

  • Deng, Dong-ping;Lu, Kuan;Li, Liang
    • Geomechanics and Engineering
    • /
    • v.19 no.2
    • /
    • pp.179-191
    • /
    • 2019
  • Based on the effective stress principle, a new formula for shear strength of unsaturated soil is derived under the general nonlinear Mohr-Coulomb (M-C) strength criterion to improve the classical strength criterion of unsaturated soil. Meanwhile, the simple irrigation model under steady seepage is adopted to obtain the distribution of the matrix suction or the degree of saturation (DOS) above the groundwater table in the slope. Then, combined with the improved strength criterion of unsaturated soil and the simple irrigation model under steady seepage, the limit equilibrium (LE) solutions for the unsaturated slope stability are established according to the global LE conditions of the entire sliding body with assumption of the stresses on the slip surface. Compared to the classical strength criterion of unsaturated soil, not only the cohesion soil but also the internal friction angle is affected by the matric suction or the DOS in the improved strength criterion. Moreover, the internal friction angle related to the matric suction has the nonlinear characteristics, particularly for a small of the matric suction. Thereafter, the feasibility of the present method is verified by comparison and analysis on some slope examples. Furthermore, stability charts are also drawn to quickly analyze the unsaturated slope stability.

Numerical Study of Unsaturated Infinite Slope Stability regarding Suction Stress under Rainfall-induced Infiltration Conditions

  • Song, Young-Suk;Hwang, Woong-Ki
    • The Journal of Engineering Geology
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Numerical stability analysis of an unsaturated infinite slope under rainfall-induced infiltration conditions was performed using generalized effective stress to unify both saturated and unsaturated conditions The soil-water characteristic curve (SWCC) of sand with a relative density of 75% was initially measured for both drying and wetting processes. The hydraulic conductivity function (HCF) and suction stress characteristic curve (SSCC) were subsequently estimated. Under the rainfall-induced infiltration conditions, transient seepage analysis of an unsaturated infinite slope was performed using the finite element analysis program, SEEP/W. Based on these results, the stability of an unsaturated infinite slope under rainfall-induced infiltration conditions was examined in relation to suction stress. According to the results, the negative pore-water pressure and water content within the slope soil changed over time due to the infiltration. In addition, the variation of the negative pore-water pressure and water content led to a variation in suction stress and a subsequent change in the slope's factor of safety during the rainfall period.