• 제목/요약/키워드: Unsafe Flight Condition

검색결과 3건 처리시간 0.019초

헬리콥터 유입류 모델에 따른 발사된 로켓의 비행궤적 영향성 및 안전발사 기동영역 해석 연구 (A Study on the Influence of Helicopter Main Rotor Inflow Model upon Launched Rocket Trajectory and Safe Launch Envelope)

  • 양창덕;정동우
    • 항공우주시스템공학회지
    • /
    • 제13권3호
    • /
    • pp.70-77
    • /
    • 2019
  • 본 논문에서는 헬리콥터의 유입류 모델에 따라 헬리콥터에서 발사되는 로켓의 궤적에 대한 영향성을 비행역학 해석을 통해 검토하였다. 무장형상의 비선형 비행역학 해석모델은 UH-60 헬리콥터 형상으로 구성하고 헬리콥터에서 발사되는 발사체의 궤적예측에는 HYDRA 70 로켓을 이용하였다. 다양한 로터 유입류 모델을 사용하여 각각의 모델에 따라 로켓 발사궤적에 미치는 영향을 검토하였다. 또한 헬리콥터의 다양한 비행조건에 대해 로켓 발사 시뮬레이션 해석을 수행하고 로켓이 로터 디스크 면과 근접하는 위험한 로켓발사 비행영역을 검토하였다.

국내 회전익 항공기 사고율 분석 및 사고의 잠재적 조건에 관한 연구 (A Study on Analysis of Accident Rate and the Latent Condition of Accident for Helicopters in Korea)

  • 유태정;김칠영;임세훈
    • 한국항공운항학회지
    • /
    • 제22권4호
    • /
    • pp.56-64
    • /
    • 2014
  • There were a total of 65 accidents of helicopers between 1990 and 2013. The overall accidents rate has remained around 8 accidents per 100,000 flight hours, and the fatal rate has stayed at about 8 accidents per 100,000 flight hours. In this study, we conduct a series of statistical analyses to investigate the significance of latent failure of groups that operate the helicopter. Analysis of variance demonstrated significant differences in the latent condition score for the 3 groups, with the lower accidents rate groups reporting better scores of latent condition. Results indicated that there are the significant differences of latent condition in accidents between groups of high accidents rate and groups of low accidents rate.

Bridge Inspection and condition assessment using Unmanned Aerial Vehicles (UAVs): Major challenges and solutions from a practical perspective

  • Jung, Hyung-Jo;Lee, Jin-Hwan;Yoon, Sungsik;Kim, In-Ho
    • Smart Structures and Systems
    • /
    • 제24권5호
    • /
    • pp.669-681
    • /
    • 2019
  • Bridge collapses may deliver a huge impact on our society in a very negative way. Out of many reasons why bridges collapse, poor maintenance is becoming a main contributing factor to many recent collapses. Furthermore, the aging of bridges is able to make the situation much worse. In order to prevent this unwanted event, it is indispensable to conduct continuous bridge monitoring and timely maintenance. Visual inspection is the most widely used method, but it is heavily dependent on the experience of the inspectors. It is also time-consuming, labor-intensive, costly, disruptive, and even unsafe for the inspectors. In order to address its limitations, in recent years increasing interests have been paid to the use of unmanned aerial vehicles (UAVs), which is expected to make the inspection process safer, faster and more cost-effective. In addition, it can cover the area where it is too hard to reach by inspectors. However, this strategy is still in a primitive stage because there are many things to be addressed for real implementation. In this paper, a typical procedure of bridge inspection using UAVs consisting of three phases (i.e., pre-inspection, inspection, and post-inspection phases) and the detailed tasks by phase are described. Also, three major challenges, which are related to a UAV's flight, image data acquisition, and damage identification, respectively, are identified from a practical perspective (e.g., localization of a UAV under the bridge, high-quality image capture, etc.) and their possible solutions are discussed by examining recently developed or currently developing techniques such as the graph-based localization algorithm, and the image quality assessment and enhancement strategy. In particular, deep learning based algorithms such as R-CNN and Mask R-CNN for classifying, localizing and quantifying several damage types (e.g., cracks, corrosion, spalling, efflorescence, etc.) in an automatic manner are discussed. This strategy is based on a huge amount of image data obtained from unmanned inspection equipment consisting of the UAV and imaging devices (vision and IR cameras).