• 제목/요약/키워드: Unmanned Military Vehicles

검색결과 121건 처리시간 0.02초

A Feasibility Study of Highway Traffic Monitoring using Small Unmanned Aerial Vehicle

  • Ro, Kap-Seong;Oh, Jun-Seok
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제8권2호
    • /
    • pp.54-66
    • /
    • 2007
  • Traffic and emergency monitoring systems are essential constituents of Intelligent Transportation System (ITS) technologies, but the lack of traffic monitoring has become a primary weakness in providing prompt emergency services. Demonstrated in numerous military applications, unmanned aerial vehicles (UAVs) have great potentials as a part of ITS infrastructure for providing quick and real-time aerial video images of large surface area to the ground. Despite of obvious advantages of UAVs for traffic monitoring and many other civil applications, it is rare to encounter success stories of UAVs in civil application including transportation. The objective of this paper is to report the outcomes of research supported by the state agency in US to investigate the feasibility of integrating UAVs into urban highway traffic monitoring as a part of ITS infrastructure. These include current technical and regulatory issues, and possible suggestions for a future UAV system in civil applications.

MEMS형 자세측정장치를 이용한 고속 기동 무인 잠수정 자율 조종 제어기에 대한 HILS (Hardware in Loop Simulation on Autopilot Controller with MEMS AHRS for High Speed Unmanned Underwater Vehicle)

  • 황아롬;윤선일;송지훈
    • 한국해양공학회지
    • /
    • 제26권5호
    • /
    • pp.81-86
    • /
    • 2012
  • Unmanned underwater vehicles have many applications in scientific, military, and commercial areas because of their autonomy. In many cases, an underwater vehicle adopts a control algorithm based on a tactical inertial sensor for precise control. However, a control algorithm that uses a tactical inertial sensor is unsuitable for some underwater vehicle missions such as torpedo decoys. This paper proposes a control algorithm for an unmanned underwater vehicle that does not require precise control. The control algorithm proposed for an unmanned underwater vehicle adopts a low cost MEMS inertial sensor, and simulations using the specifications of the MEMS inertial sensor under development are performed to verify the control algorithm under a real environment. The results of these simulations are presented.

레이저 다이오드를 이용한 이진 신호누적 방식의 거리측정기 기술 (A DLRF(Diode Laser Range Finder) Using the Cumulative Binary Detection Algorithm)

  • 양동원
    • 한국군사과학기술학회지
    • /
    • 제10권4호
    • /
    • pp.152-159
    • /
    • 2007
  • In this paper, a new design technique on the LRF which is useful for low power laser and a CBDA(Cummulative Binary Detection Algorithm) is proposed. The LD(Laser Diode) and Si-APD(Silicon Avalanche Photo Diode) are used for saving a power. In order to prove the detection range, the Si-APD binary data are accumulated before the range computation and the range finding algorithm. A prototype of the proposed DLRF(Diode Laser Range Finder) system was made and tested. An experimental result shows that the DLRF system have the same detection range using a less power(almost 1/32) than an usual military LRF. The proposed DLRF can be applied to the Unmanned Vehicles, Robot and Future Combat System of a tiny size and a low power LRF.

국내외 군사용 무인기 개발 동향 분석 및 북한 무인기 대응 방안 제언 (Analysis of Domestic and Foreign Military UAV Development Trends and Suggestions for Countermeasures Against North Korea UAVs)

  • 김규범;조인제;서일수
    • 융합정보논문지
    • /
    • 제11권12호
    • /
    • pp.97-105
    • /
    • 2021
  • 미국, 러시아, 유럽 등의 국가에서는 저피탐 무인기를 비롯한 다양한 목적의 무인기를 개발 및 운용하고 있다. 북한 또한 무인기를 운용하고 있으며, 국가 보안지역의 정보 획득을 위해서 휴전선 이남으로 지속적으로 비행을 하고 있다고 추측되나, 효율적으로 탐지 및 무력화를 시키기는 어려운 현실이다. 따라서 본 논문은 미국을 비롯한 서방 국가들과 러시아, 중국, 북한 등 공산국가들의 군용 무인기의 개발 동향과 군용 레이더 사양을 문헌조사를 통해 분석하였다. 또한 국내에서 진행되고 있는 능동위상배열 레이다 기반 무인기 대응 시스템에 대한 조사와 이를 바탕으로 일반적인 대응뿐만 아니라 재밍이 불가능한 북한 무인기에 대해 직접 타격 및 전자기펄스 등의 대응 안을 제시하였다.

무인수상선의 단일 카메라를 이용한 VFH+ 기반 장애물 회피 기법 (VFH+ based Obstacle Avoidance using Monocular Vision of Unmanned Surface Vehicle)

  • 김태진;최진우;이영준;최현택
    • 한국해양공학회지
    • /
    • 제30권5호
    • /
    • pp.426-430
    • /
    • 2016
  • Recently, many unmanned surface vehicles (USVs) have been developed and researched for various fields such as the military, environment, and robotics. In order to perform purpose specific tasks, common autonomous navigation technologies are needed. Obstacle avoidance is important for safe autonomous navigation. This paper describes a vector field histogram+ (VFH+) based obstacle avoidance method that uses the monocular vision of an unmanned surface vehicle. After creating a polar histogram using VFH+, an open space without the histogram is selected in the moving direction. Instead of distance sensor data, monocular vision data are used for make the polar histogram, which includes obstacle information. An object on the water is recognized as an obstacle because this method is for USV. The results of a simulation with sea images showed that we can verify a change in the moving direction according to the position of objects.

전복 방지를 위한 소형 무인주행로봇의 자세 안정화 알고리즘 (Posture Stabilization Algorithm of A Small Unmanned Ground Vehicle for Turnover Prevention)

  • 고두열;김영국;이상훈;지태영;김경수;김수현
    • 한국군사과학기술학회지
    • /
    • 제14권6호
    • /
    • pp.965-973
    • /
    • 2011
  • Small unmanned ground vehicles(SUGVs) are typically operational on unstructured environments such as crashed building, mountain area, caves, and so on. On those terrains, driving control can suffer from the unexpected ground disturbances which occasionally lead turnover situation. In this paper, we have proposed an algorithm which sustains driving stability of a SUGV as preventing from turnover. The algorithm exploits potential field method in order to determine the stability of the robot. Then, the flipper and manipulator posture of the SUGV is optimized from local optimization algorithm known as gradient descent method. The proposed algorithm is verified using 3D dynamic simulation, and results showed that the proposed algorithm contributes to driving stability of SUGV.

Bio-inspired Evasive Movement of UAVs based on Dragonfly Algorithm in Military Environment

  • Gudi, Siva Leela Krishna Chand;Kim, Bo-sun;Silvirianti, Silvirianti;Shin, Soo Young;Chae, Seog
    • Journal of information and communication convergence engineering
    • /
    • 제17권1호
    • /
    • pp.84-90
    • /
    • 2019
  • Applications of unmanned aerial vehicles (UAVs) in the military environment have become popular because they require minimum human contribution and can avoid accidents during missions. UAVs are employed in various missions such as reconnaissance, observation, aggression, and protection. Consequently, counter-measures, known as anti-drone technologies, have been developed as well. In order to protect against threats from anti-drone technologies and enhance the survivability of UAVs, this study proposes an evasive measure. The proposed bio-inspired evasive maneuver of a UAV mimics a dragonfly's irregular flight. The unpredictable UAV movement is able to confuse enemies and avoid threats, thereby enhancing the UAV's survivability. The proposed system has been implemented on a commercial UAV platform (AR Drone 2.0) and tested in a real environment. The experiment results demonstrate that the proposed flight pattern has larger displacement values compared to a regular flight maneuver, thus making the UAV's position is difficult to predict.

랜덤 진동 시험 및 해석 기법을 이용한 무인 비행체의 비행 진동 환경 규격 연구 (A Study on the Flight Vibration Environmental Specification of Unmanned Flying Vehicle using Random Vibration Test and Analysis Methods)

  • 최장섭;오동호
    • 한국군사과학기술학회지
    • /
    • 제25권6호
    • /
    • pp.596-605
    • /
    • 2022
  • In this study, analysis of dynamic characteristics and flight vibration was performed to unmanned aerial vehicles. The analysis model was supplemented by performing a dynamic characteristic test and a random vibration test using manufactured dummy aerial vehicle. For the dynamic characteristic test, a bungee cable was used to implement the free end boundary condition. Prior to the flight vibration test using a multiple electric shaker, a random vibration test was performed to predict the excitation force during the actual flight vibration test. It was judged that the actual test could be predicted more accurately by supplementing the analysis model from the test results. In addition, it was possible to determine the feasibility of the test by predicting the excitation force of the flight vibration test.

딥 러닝 기법을 이용한 무인기 표적 분류 방법 연구 (Research for Drone Target Classification Method Using Deep Learning Techniques)

  • 최순현;조인철;현준석;최원준;손성환;최정우
    • 한국군사과학기술학회지
    • /
    • 제27권2호
    • /
    • pp.189-196
    • /
    • 2024
  • Classification of drones and birds is challenging due to diverse flight patterns and limited data availability. Previous research has focused on identifying the flight patterns of unmanned aerial vehicles by emphasizing dynamic features such as speed and heading. However, this approach tends to neglect crucial spatial information, making accurate discrimination of unmanned aerial vehicle characteristics challenging. Furthermore, training methods for situations with imbalanced data among classes have not been proposed by traditional machine learning techniques. In this paper, we propose a data processing method that preserves angle information while maintaining positional details, enabling the deep learning model to better comprehend positional information of drones. Additionally, we introduce a training technique to address the issue of data imbalance.

무인기 군집 비행 보안위협 및 보안요구사항 연구 (A study on the security threat and security requirements for multi unmanned aerial vehicles)

  • 김만식;강정호;전문석
    • 디지털융복합연구
    • /
    • 제15권8호
    • /
    • pp.195-202
    • /
    • 2017
  • Unmanned Aerial Vehicle (UAV)는 군사적 목적으로 주로 이용되었지만 ICT의 발전과 저렴해진 제작비용으로 인해 다양한 민간 서비스에서도 점차 이용되고 있다. UAV는 앞으로 스스로 임무를 수행하는 자율비행을 할 것이라 기대되고 있는데, 복잡한 임무를 수행하기 위해서는 군집 비행이 필수적이다. UAV 군집 비행은 기존 UAV 시스템과 네트워크 및 인프라 구조가 달라 국내외에서 많은 연구가 이루어지고 있지만, 아직 안전한 UAV 군집 비행을 위한 보안위협 및 보안요구사항에 대한 연구가 이루어지지 않고 있다. 본 논문에서는 이러한 문제점을 해결하기 위하여 UAV 자율비행기술을 미 공군 연구소와 미국 육군 공병대를 기반으로 정의하고 UAV 군집비행기술 및 보안위협을 분류하였다. 그리고 각 UAV 군집비행기술의 보안위협에 따른 보안요구사항을 정의하여 비교 분석함으로써 향후 안전한 UAC 자율비행 기술 발전에 기여할 수 있도록 하였다.