• 제목/요약/키워드: Unmanned Military Vehicles

검색결과 121건 처리시간 0.024초

3차원 격자지도 기반 생존성 극대화를 위한 다수 무인 항공기 임무경로 계획 (Mission Path Planning to Maximize Survivability for Multiple Unmanned Aerial Vehicles based on 3-dimensional Grid Map)

  • 김기태;전건욱
    • 산업공학
    • /
    • 제25권3호
    • /
    • pp.365-375
    • /
    • 2012
  • An Unmanned Aerial Vehicle (UAV) is a powered pilotless aircraft, which is controlled remotely or autonomously. UAVs are an attractive alternative for many scientific and military organizations. UAVs can perform operations that are considered to be risky or uninhabitable for humans. UAVs are currently employed in many military missions and a number of civilian applications. For accomplishing the UAV's missions, guarantee of survivability should be preceded. The main objective of this study is to suggest a mathematical programming model and a $A^*PS$_PGA (A-star with Post Smoothing_Parallel Genetic Algorithm) for Multiple UAVs's path planning to maximize survivability. A mathematical programming model is composed by using MRPP (Most Reliable Path Problem) and MTSP (Multiple Traveling Salesman Problem). After transforming MRPP into Shortest Path Problem (SPP),$A^*PS$_PGA applies a path planning for multiple UAVs.

기술 선도국의 소형 무인 지상 차량 개발 동향 (Development Trends of Small Unmanned Ground Vehicles in Technology Leading Countries)

  • 류준열;김수찬;김태완
    • 한국산학기술학회논문지
    • /
    • 제22권1호
    • /
    • pp.214-220
    • /
    • 2021
  • 소형 무인 지상 차량은 폭발물 제거 작전, 대테러 작전, 화재 진화 및 소방정찰, 재해·재난지역 정찰 및 접적 지역 감시 등의 위험한 임무를 수행하기 위해 사용되고 있다. 기술 선도국인 미국, 영국, 프랑스, 독일, 이스라엘 등에서는 군사 분야뿐만 아니라 민간 분야에서 활용하기 위해 다양한 무인 지상 차량을 개발하여 운용하고 있다. 개발된 체계는 실 운용 과정에서 수집된 데이터와 연관된 추가 요구사항을 기반으로 더욱 업그레이드되고 있으며, 향후 소형 무인 지상 차량 개발에 있어 기술 선도국의 개발 동향은 중요한 지표로 활용될 수 있다. 본 연구에서는 기술 선도국에서 운용 중인 소형 무인 지상 차량의 개발 동향 및 임무를 분석하였다. 군사 및 민간 분야에서 다양한 임무를 수행하고 있는 소형 무인 지상 차량을 대상으로 체계에 적용된 정찰 능력, 특수기능 등의 능력과 다양한 임무 형태에 따른 체계 운용 목적을 분석하였다. 기술 선도국의 소형 무인 지상 차량 개발 동향을 토대로 향후 군사 및 민간 분야에서 소형 무인 지상 차량 개발에 필요한 기능 및 설계 특성에 대해 논한다.

군용 무인기의 항공전자 아키텍처 설계 (Avionics Architecture Design for Military Unmanned Aerial Vehicles)

  • 심재익;최재원;김용태;유동완;양국보;하현석;김상진;이승열;정상준
    • 한국군사과학기술학회지
    • /
    • 제25권6호
    • /
    • pp.628-636
    • /
    • 2022
  • This paper describes the design of the avionics architecture for military unmanned aerial vehicles considering the airworthiness requirements for the first time. This design considers the redundancy in the system data bus and the power system and the data link system to meet the system safety requirements of the airworthiness requirements of military UAVs. This avionics architecture design has been verified through the system integration test and the flight test after manufacturing the UAV.

유무인 협업을 활용한 고가치 공중 자산의 호위 전술 개발과 M&S를 활용한 효과적인 전력배치 방안 연구 (The Development of Air Escort Tactics for High-Value Airborne Assets Using Manned-Unmanned Teaming and the Study on Effective Force Disposition Using M&S)

  • 박명환;유승훈;오지현;설현주
    • 한국군사과학기술학회지
    • /
    • 제25권4호
    • /
    • pp.401-411
    • /
    • 2022
  • As the role of high-value air assets(e.g., AWACS, JSTARS, Rivet Joint, E-2) becomes more critical in modern warfare, the air escort for these assets blocking attacks from any potential enemy fighter also becomes vital. Without the escort, the operations of the assets become restricted. However, such an escort is not always possible due to the limited flight time of the escort fighters. In this paper, we introduce an escort tactics for high-value air assets performed by the manned-unmanned teaming composed of a transport aircraft and UAVs(unmanned aerial vehicles). In this tactics, the transport aircraft plays the role of an aircraft carrier, which carries, launches, and retrieves the UAVs. The missions of UAVs in this tactics are to detect and engage enemy fighters. We also introduce the simulation result of this tactics to identify the UAVs' required capabilities and optimal maneuvering.

Advanced Navigation Technology Development Trend as an Unmanned Vehicle Core Technology

  • Seok, Hyo-Jeong;Hwang, In Seong;Kang, Wanggu
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제10권4호
    • /
    • pp.235-242
    • /
    • 2021
  • Unmanned Aerial Vehicles (UAVs), which were used for military purposes, are gradually expanding their application fields under the influence of electrification and digitalization. Starting from the field of aerial imaging and Intelligence Surveillance and Reconnaissance (ISR) mission, nowadays the possibility of Urban Air Mobility (UAM), which transports passengers and cargo with drones, is widely under discussion. In order to occupy the rapidly growing global unmanned aerial vehicle market in advance, it is necessary to secure core technologies and develop key UAVs components based on the new technologies. In the navigation field, it is necessary to secure a precise position with guaranteed reliability and continuity, unrelated to the operating environments. The reliability and continuity should be secured in the algorithm level and in the H/W component levels also. In order to achieve this technical goal, the Ministry of Science and ICT has launched the 'Unmanned Vehicle Core Technology Research and Development Program' in 2019 to support the R&D on the unmanned vehicle technologies. In this paper, authors introduce the unmanned vehicle core technology research and development program to the related researchers. The authors summarize the backgrounds of the program and show the technological tasks and objectives on the sub-programs in the unmanned vehicle navigation program. We present the program schedules especially focused on the test and evaluation of the developed technologies and components.

소형 무인기 탐지를 위한 패시브 레이더망 최적 배치 연구 (Study on the Optimal Deployment of the Passive Radar System for Detecting Small Unmanned Aerial Vehicles)

  • 백인선;이태식
    • 한국군사과학기술학회지
    • /
    • 제19권4호
    • /
    • pp.443-452
    • /
    • 2016
  • Current low-altitude radar system often fails to detect small unmanned aerial vehicles (UAV) because of their small radar cross section (RCS) compared with larger targets. As a potential alternative, a passive bistatic radar system has been considered. We study an optimal deployment problem for the passive bistatic radar system. We model this problem as a covering problem, and develop an integer programming model. The objective of the model is to maximize coverage of a passive bistatic radar system. Our model takes into account factors specific to a bistatic radar system, including bistatic RCS and transmitter-receiver pair coverage. Considering bistatic RCS instead of constant RCS is important because the slight difference of RCS value for small UAVs could significantly influence the detection probability. The paired radar coverage is defined by using the concept of gradual coverage and cooperative coverage to represent a realistic environment.

전원부하분석을 통한 무인항공기 전기시스템 설계 및 검증 (Design and Verification of Electrical System for Unmanned Aerial Vehicle through Electrical Load Power Analysis)

  • 우희채
    • 한국군사과학기술학회지
    • /
    • 제21권5호
    • /
    • pp.675-683
    • /
    • 2018
  • In this paper, we have proposed a design and verification methods of electrical system and power loads for unmaned aeriel vehicles(UAVs) through electrical load analysis. In order to meet a UAV system requirement and electrical system specifications, we have designed an electrical power system for efficient power supply and distribution and have theoretically analyzed the power loads according to the power consumption and power bus design of UAV. Using electrical system rig, the designed electrical power system has been experimentally verified. Also, we have performed several flight tests to verify the UAV electrical system and power loads. It is concluded that the proposed design and verification method of electrical system for UAV system.

무인잠수정 기뢰 탐색 효과도 분석 (A Study on Unmaned Underwater Vehicle Operational Performance Analysis for Mine Search Operation)

  • 황아롬;김문환;이심용;윤재문;김찬기
    • 한국군사과학기술학회지
    • /
    • 제14권5호
    • /
    • pp.781-787
    • /
    • 2011
  • Mine countermeasure missions(MCMs) may induce the loss of human and ship because of the covert of mine. In recent years, unmanned underwater vehicles(UUVs) have emerged as viable technical solution for conductimg underwater search, surveillance, and clearance operations in support of mine countermeasure missions because of her autonomy and long time endurance capability. This paper introduces a technical approach to mine countermeasure mission effectiveness analysis and presents some simulation-based analysis results for engineering of the UUV system definition which could be support analysis of alternatives for system definition and design.

기뢰 탐색 작전용 무인잠수정 효과도 분석 시뮬레이션을 위한 시뮬레이션 모델 연구 (A Study of Simulation Model for Effectiveness Analysis Simulation of Unmaned Underwater Vehicle for Mine Searching)

  • 황아롬;김문환;이심용
    • 한국군사과학기술학회지
    • /
    • 제15권4호
    • /
    • pp.410-416
    • /
    • 2012
  • In recent years, unmanned underwater vehicles(UUVs) have emerged as viable technical solution for conducting underwater search, surveillance, and clearance operations in support of mine countermeasure missions(MCMs) because of her autonomy and long time endurance capability. It is necessary for UUV for MCM system design to define system specification from various configuration alternatives. This paper introduces a simulation model for mine countermeasure mission effectiveness analysis and presents some simulation results under various tide conditions for validation of the proposed simulation model.

Unmanned Vehicle System Configuration using All Terrain Vehicle

  • Moon, Hee-Chang;Park, Eun-Young;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1550-1554
    • /
    • 2004
  • This paper deals with an unmanned vehicle system configuration using all terrain vehicle. Many research institutes and university study and develop unmanned vehicle system and control algorithm. Now a day, they try to apply unmanned vehicle to use military device and explore space and deep sea. These unmanned vehicles can help us to work is difficult task and approach. In the previous research of unmanned vehicle in our lab, we used 1/10 scale radio control vehicle and composed the unmanned vehicle system using ultrasonic sensors, CCD camera and kinds of sensor for vehicle's motion control. We designed lane detecting algorithm using vision system and obstacle detecting and avoidance algorithm using ultrasonic sensor and infrared ray sensor. As the system is increased, it is hard to compose the system on the 1/10 scale RC car. So we have to choose a new vehicle is bigger than 1/10 scale RC car but it is smaller than real size vehicle. ATV(all terrain vehicle) and real size vehicle have similar structure and its size is smaller. In this research, we make unmanned vehicle using ATV and explain control theory of each component

  • PDF