• Title/Summary/Keyword: Unmanned Aircraft

Search Result 410, Processing Time 0.029 seconds

UAV LRU Layout Optimizing Using Genetic Algorithm (유전알고리즘을 이용한 무인항공기 장비 배치 최적 설계)

  • Back, Sunwoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.8
    • /
    • pp.621-629
    • /
    • 2020
  • LRU layout is a complex problem that requires consideration of various criteria such as airworthiness, performance, maintainability and environmental requirements. As aircraft functions become more complex, the necessary equipment is increasing, and unmanned aerial vehicles are equipped with more equipment as a substitute for pilots. Due to the complexity of the problem, the increase in the number of equipment, and the limited development period, the placement of equipment is largely dependent on the engineer's insight and experience. For optimization, quantitative criteria are required for evaluation, but criteria such as safety, performance, and maintainability are difficult to quantitatively compare or have limitations. In this study, we consider the installation and maintenance of the equipment, simplify the deployment model to the traveling salesman problem, Optimization was performed using a genetic algorithm to minimize the weight of the connecting cable between the equipment. When the optimization results were compared with the global calculations, the same results were obtained with less time required, and the improvement was compared with the heuristic.

Assessment of Flight Control Performance based on the Ground Test Results of Smart UAV (스마트 무인기의 지상시험을 통한 비행제어 성능분석)

  • Kang, Young-Shin;Park, Bum-Jin;Yoo, Chang-Sun;Kim, Yu-Shin;Koo, Sam-Ok
    • Aerospace Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • The tilt-rotor Smart UAV(Unmanned Air Vehicle) has been developed by KARI(Korea Aerospace Research Institute) for civil purposes. In order to prove the reliabilities of total system of Smart UAV, the series of ground tests were performed including system interface test, aircraft HILS(Hardware In the Loop Simulation) Test, ground power test, 4-DOF (Degrees of Freedom)rig test, and tethered hover test. Many unexpected problems occurred at each ground test. With clearing these problems, the total Smart UAV systems were matured and the airworthiness was proven enough. After complete of additional ground test proposed by FRRB(Flight Readiness Review Board), the first flight test will be performed in this year. This paper presents the procedures and the analysis results of the ground tests for the tilt-rotor Smart UAV.

Development of the Connection Unit with a Gas Gun Installed in a Quadcopter-type Drone (쿼드콥터형 드론에 설치된 가스총 결합유닛의 개발)

  • Jeon, Junha;Kang, Ki-Jun;Kwon, Hyun-Jin;Chang, Se-Myong;Jeong, Jae-Bok;Baek, Jae-Gu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.9
    • /
    • pp.774-781
    • /
    • 2018
  • In this investigation, a gas gun is proposed driven by carbon dioxide gas and installed on a quadcopter-type small unmanned drone for the purpose of cattle vaccination, and we developed a launcher and its connection unit. The system consists of a commercial drone, a gas gun, a solenoid valve, and the remote communication controller, etc. The velocity of launched projectile is measured, and the full system is finally validated through ground test and flight examination loaded for the real aircraft. The feasibility is checked if this technology is applicable to various disease abatement and hazard mitigation in the fields of agriculture and fire-fighting with the present research and development.

Stability Research on Aerodynamic Configuration Design and Trajectory Analysis for Low Altitude Subsonic Unmanned Air Vehicle

  • Rafique, Amer Farhan;He, LinShu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.690-699
    • /
    • 2008
  • In this paper a conventional approach for design and analysis of subsonic air vehicle is used. First of all subsonic aerodynamic coefficients are calculated using Computational Fluid Dynamics(CFD) tools and then wind-tunnel model was developed that integrates vehicle components including control surfaces and initial data is validated as well as refined to enhance aerodynamic efficiency of control surfaces. Experimental data and limited computational fluid dynamics solutions were obtained over a Mach number range of 0.5 to 0.8. The experimental data show the component build-up effects and the aerodynamic characteristics of the fully integrated configurations, including control surface effectiveness. The aerodynamic performance of the fully integrated configurations is comparable to previously tested subsonic vehicle models. Mathematical model of the dynamic equations in 6-Degree of Freedom(DOF) is then simulated using MATLAB/SIMULINK to simulate trajectory of vehicle. Effect of altitude on range, Mach no and stability is also shown. The approach presented here is suitable enough for preliminary conceptual design. The trajectory evaluation method devised accurately predicted the performance for the air vehicle studied. Formulas for the aerodynamic coefficients for this model are constructed to include the effects of several different aspects contributing to the aerodynamic performance of the vehicle. Characteristic parameter values of the model are compared with those found in a different set of similar air vehicle simulations. We execute a set of example problems which solve the dynamic equations to find the aircraft trajectory given specified control inputs.

  • PDF

Estimation of Rice Grain Yield Distribution Using UAV Imagery (무인비행체 영상을 활용한 벼 수량 분포 추정)

  • Lee, KyungDo;An, HoYong;Park, ChanWon;So, KyuHo;Na, SangIl;Jang, SuYong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.4
    • /
    • pp.1-10
    • /
    • 2019
  • Unmanned aerial vehicle(UAV) can acquire images with lower cost than conventional manned aircraft and commercial satellites. It has the advantage of acquiring high-resolution aerial images covering in the field area more than 50 ha. The purposes of this study is to develop the rice grain yield distribution using UAV. In order to develop a technology for estimating the rice yield using UAV images, time series UAV aerial images were taken at the paddy fields and the data were compared with the rice yield of the harvesting area for two rice varieties(Singdongjin, Dongjinchal). Correlations between the vegetation indices and rice yield were ranged from 0.8 to 0.95 in booting period. Accordingly, rice yield was estimated using UAV-derived vegetation indices($R^2=0.70$ in Sindongjin, $R^2=0.92$ in Donjinchal). It means that the rice yield estimation using UAV imagery can provide less cost and higher accuracy than other methods using combine with yield monitoring system and satellite imagery. In the future, it will be necessary to study a variety of information convergence and integration systems such as image, weather, and soil for efficient use of these information, along with research on preparing management practice work standards such as pest control and nutrient use based on UAV image information.

The Modeling of Management Data and Drones Recommendation for Military Operation Support Mission (군 작전지원 임무 수행을 위한 드론 추천 및 관리 데이터 모델링)

  • Park, Keun-Seog;cheon, Sang-pil;Eom, Jung-ho
    • Convergence Security Journal
    • /
    • v.18 no.3
    • /
    • pp.133-140
    • /
    • 2018
  • As the core technology of the 4th Industrial Revolution is applied to drone, the potential for growth in the field of unmanned aerial vehicles is very large, and the utilization of civilian & military fields in the domestic & foreign is increasing rapidly. Because application areas of drone in the civilian field is various, it is excellent in terms of cost effectiveness and high value in utilization when it is used for military operation support mission. Especially, in the case of the Air Force, it is expected that military usage effectiveness will be high if drone replaces various air operations support missions such as aircraft inspection, supply of military supplies, base security. We find out the missions that can utilize drones for military operations support and propose the recommendation and data management plan accordingly. We recommend the most suitable drones and equipment that perform similar missions in the private sector and propose the data modeling of relational database.

  • PDF

UAV Path Planning for ISR Mission and Survivability (무인항공기의 생존성을 고려한 감시정찰 임무 경로 계획)

  • Bae, Min-Ji
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.211-217
    • /
    • 2019
  • In an complicated battlefield environment, information from enemy's camp is an important factor in carrying out military operations. For obtaining this information, the number of UAVs that can be deployed to the mission without our forces' loss and at low cost is increasing. Because the mission environment has anti-aircraft weapons, mission space is needed for UAV to guarantee survivability without being killed. The concept of Configuration Space is used to define the mission space considering with range of weapons and detect range of UAV. UAV must visit whole given area to obtain the information and perform Coverage Path Planning for this. Based on threats to UAV and importance of information that will be obtained, area that UAV should visit first is defined. Grid Map is generated and mapping threat information to each grid for UAV path planning. On this study, coverage conditions and path planning procedures are presented based on the threat information on Grid Map, and mission space is expanded to improve detection efficiency. Finally, simulations are performed, and results are presented using the suggested UAV path planning method in this study.

A Study of Certification of Lightning Indirect Effects on Cable Harness in Personal Air Vehicles (PAV 케이블 하네스에 대한 낙뢰 간접 영향성 인증 기법에 관한 연구)

  • Jo, Jae-Hyeon;Kim, Yun-Gon;Park, Se-Woong;Myong, Rho-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.3
    • /
    • pp.251-262
    • /
    • 2021
  • The airworthiness certification of lightning indirect effects becomes an important issue in personal air vehicles (PAVs), which are being actively developed around the world. PAVs are very vulnerable to lightning strikes, because of miniaturization, use of the electric engines, composite materials, and application of unmanned navigation systems. In this study, we first examined various steps of certifications for lightning indirect effects shown in AC 20 136B issued by the Federal Aviation Administration (FAA). We then applied certification guidelines for equipment transient design level listed in RTCA DO 160G Section 22 to PAVs and investigated lightning transient environments inside the PAVs. We also analyzed the aircraft level tests specified in SAE ARP 5416A by using electromagnetic computational analysis software EMA3D. Finally, we analyzed the actual transient level for PAVs and derived the data necessary for conformity certification.

Development of small multi-copter system for indoor collision avoidance flight (실내 비행용 소형 충돌회피 멀티콥터 시스템 개발)

  • Moon, Jung-Ho
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.1
    • /
    • pp.102-110
    • /
    • 2021
  • Recently, multi-copters equipped with various collision avoidance sensors have been introduced to improve flight stability. LiDAR is used to recognize a three-dimensional position. Multiple cameras and real-time SLAM technology are also used to calculate the relative position to obstacles. A three-dimensional depth sensor with a small process and camera is also used. In this study, a small collision-avoidance multi-copter system capable of in-door flight was developed as a platform for the development of collision avoidance software technology. The multi-copter system was equipped with LiDAR, 3D depth sensor, and small image processing board. Object recognition and collision avoidance functions based on the YOLO algorithm were verified through flight tests. This paper deals with recent trends in drone collision avoidance technology, system design/manufacturing process, and flight test results.

Conceptual Design and Flight Testing of a Synchropter Drone (Synchropter 드론의 개념설계 및 비행시험)

  • Chung, Injae;Moon, Jung-ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.12
    • /
    • pp.997-1004
    • /
    • 2020
  • A synchropter is a type of rotorcraft in which a pair of blades inclined with each other rotates in synchronization. Removing the tail rotor enables an efficient and compact configuration similar to a coaxial-rotor helicopter. This paper describes the design and flight test results of a small synchropter to examine the suitability of a drone system for the army. The synchropter in this paper is a small vehicle with a rotor diameter of 1.4m and a weight of 7kg and was assembled based on commercial parts to examine flight characteristics effectively. The flight control system adopted Pixhawk, which is designed based on an open-architecture. The model-based design technique is applied to develop the control law of the synchropter and a new firmware embedded on the Pixhawk. Through qualitative flight tests, we analyzed the flight characteristics. As a result of the analysis, we confirmed the possibility of application as a drone system of the synchropter.