• Title/Summary/Keyword: Unmanned Aerial System

Search Result 671, Processing Time 0.029 seconds

Power System Development of Unmanned Aerial Vehicle using Proton Exchange Membrane Fuel Cell (고분자 전해질 연료전지를 이용한 무인비행체 동력시스템 설계)

  • Jee, Yeong-Kwang;Sohn, Young-Jun;Park, Gu-Gon;Kim, Chang-Soo;Choi, Yu-Song;Cho, Sung-Baek
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.3
    • /
    • pp.250-255
    • /
    • 2012
  • In this paper, the development and performance analysis of a fuel cell-powered unmanned aerial vehicle is described. A fuel cell system featuring 1 kW proton exchange membrane fuel cell combined with a highly pressurized fuel supply system is proposed. For the higher fuel consumption efficiency and simplification of overall system, dead-end type operation is chosen and each individual system such as purge system, fuel supply system, cooling system is developed. Considering that fluctuation of exterior load makes it hard to stabilize fuel cell performance, the power management system is designed using a fuel cell and lithium-ion battery hybrid system. After integration of individual system, the performance of unmanned aerial vehicle is analyzed using data from flight and laboratory test. In the result, overall system was properly operated but for more duration of flight, research on weight lighting and improvement of fuel efficiency is needed to be progressed.

Ironbird Ground Test for Tilt Rotor Unmanned Aerial Vehicle

  • Hwang, Soo-Jung;Choi, Seong-Wook
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.313-318
    • /
    • 2010
  • The power plant system of a tilt rotor unmanned aerial vehicle (UAV) was verified by the Ironbird ground test, which considerably reduces cost and risk during the developmental stages. The function and performance of the engine, drive line, nacelle conversion, and rotor systems were evaluated using a building block test approach. The Ironbird test concept facilitates the discovery of potential faults in earlier stages of the testing period. As a result, the developmental testing period could effectively be shortened. The measured test data acquired through a ground control and data acquisition system exhibited satisfactory results which meet the developmental specifications of a tilt rotor UAV.

Development of an Autonomous Situational Awareness Software for Autonomous Unmanned Aerial Vehicles

  • Kim, Yun-Geun;Chang, Woohyuk;Kim, Kwangmin;Oh, Taegeun
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.2
    • /
    • pp.36-44
    • /
    • 2021
  • Unmanned aerial vehicles (UAVs) are increasingly needed as they can replace manned aircrafts in dangerous military missions. However, because of their low autonomy, current UAVs can execute missions only under continuous operator control. To overcome this limitation, higher autonomy levels of UAVs based on autonomous situational awareness is required. In this paper, we propose an autonomous situational awareness software consisting of situation awareness management, threat recognition, threat identification, and threat space analysis to detect dynamic situational change by external threats. We implemented the proposed software in real mission computer hardware and evaluated the performance of situational awareness toward dynamic radar threats in flight simulations.

A Plight Test Method for the System Identification of an Unmanned Aerial Vehicle (무인항공기의 시스템 식별을 위한 비행시험기법)

  • Lee, Youn-Saeng;Suk, Jin-Young;Kim, Tae-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.7
    • /
    • pp.130-136
    • /
    • 2002
  • In this paper, a flight test method is described for the system identification of the unmanned aerial vehicle equipped with an automatic flight control system. Multistep inputs are applied for both longitudinal mode and lateral/directional excitation. Optimal time step for excitation is sought to provide the broad input bandwidth. A programmed mode flight test method provides high-quality flight data for system identification using the flight control computer with the longitudinal and lateral/directional autopilot which enables the separation of each motion during the flight test. In addition, exact actuating input that is almost equivalent to the designed one guarantees the highest input frequency attainable. Several repetitive flight tests were implemented in the calm air in order to extract the consistent system model for the air vehicle. The enhanced airborne data acquisition system endowed the high-quality flight data for the system identification. The flight data were effectively used to the system identification of the unmanned aerial vehicle.

Development of Aerial Application System Attachable to Unmanned Helicopter - Basic Spraying Characteristics for Aerial Application System - (무인헬리콥터를 이용한 항공방제시스템 개발(I) - 항공방제시스템 구축을 위한 기초 분무특성 -)

  • Kang, Tae-Gyoung;Lee, Chai-Sik;Choi, Duck-Kyu;Jun, Hyeon-Jong;Koo, Young-Mo;Kang, Tae-Hwan
    • Journal of Biosystems Engineering
    • /
    • v.35 no.4
    • /
    • pp.215-223
    • /
    • 2010
  • In order to develop an precision aerial pesticide application system to be attached to an unmanned helicopter which can be applied to small lots of land, this study analyzed the flowing and spraying characteristics of the spray droplets by the main rotor downwash by setting the application conditions at the flight altitude of 3 m, the diameter of main rotor of 3.1 m, the boom length of around 2.8 m, and the spraying rate of 8 L/ha. The results of this study are summarized below. Through analysis of the covering area ratio of the spray droplets by main rotor downwash by nozzle type, boom with tilt angle and height, it was found that the covering area ratio of the twin flat-fan nozzle of around 25% was more uniform than other types of nozzle, also boom with $10^{\circ}$ tilt angle and spraying height of 3 m was shown to be the appropriate conditions for aerial application of pesticides. It was found that the nozzle position to minimize the scattering loss of spray droplets due to vortex phenomenon at both ends of the main rotor was around 10 cm from the end of the main rotor. An application test for the aerial pesticide application system attached to the HUA-ACEI unmanned helicopter developed by the Rural Development Administration showed that the range of covering area ratio of the spray droplets was 10-25%, and the spraying width was approximately 7 m when over 10% of covering area ratio was considered for valid spraying.

System Identification and Stability Evaluation of an Unmanned Aerial Vehicle From Automated Flight Tests

  • Jinyoung Suk;Lee, Younsaeng;Kim, Seungjoo;Hueonjoon Koo;Kim, Jongseong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.654-667
    • /
    • 2003
  • This paper presents a consequence of the systematic approach to identify the aerodynamic parameters of an unmanned aerial vehicle (UAV) equipped with the automatic flight control system. A 3-2-1-1 excitation is applied for the longitudinal mode while a multi-step input is applied for lateral/directional excitation. Optimal time step for excitation is sought to provide the broad input bandwidth. A fully automated programmed flight test method provides high-quality flight data for system identification using the flight control computer with longitudinal and lateral/directional autopilots, which enable the separation of each motion during the flight test. The accuracy of the longitudinal system identification is improved by an additional use of the closed-loop flight test data. A constrained optimization scheme is applied to estimate the aerodynamic coefficients that best describe the time response of the vehicle. An appropriate weighting function is introduced to balance the flight modes. As a result, concurrent system models are obtained for a wide envelope of both longitudinal and lateral/directional flight maneuvers while maintaining the physical meanings of each parameter.

A Study on Efficient Methods of Pesticide Control Using Agricultural Unmanned Aerial Vehicles (농업용 무인항공기를 활용한 농약방제 효율성 방안에 관한 연구)

  • Jeong, Ga-Young;Cho, Yong-Yoon
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.2
    • /
    • pp.35-40
    • /
    • 2022
  • In the agricultural environment, pesticide control requires a high risk of work and a high labor force for farmers. The effectiveness of pesticide control using unmanned aerial vehicles varies according to climate, land type, and characteristics of unmanned aerial vehicles. Therefore, an effective method for pesticide control by unmanned aerial vehicles considering the spraying conditions and environmental conditions is required. In this paper, we propose an efficient pesticide control system based on agricultural unmanned aerial vehicles considering the application conditions and environmental information for each crop. The effectiveness of the proposed model was demonstrated by measuring the drop uniformity of pesticides according to the change in altitude and speed after attaching the sensory paper and measuring the penetration rate of the drug inside the canopy according to the change in crop growth conditions. Experiment result, the closer the height of the UAV is to the ground, the more evenly the crops are sprayed, but for safety reasons, 2m more is suitable, and on average a speed of 2m/s is most suitable for control. The proposed control system is expected to help develop intelligent services based on the use of various unmanned aerial vehicles in agricultural environments.

Experimental Evaluation of Unmanned Aerial Vehicle System Software Based on the TMO Model

  • Park, Han-Sol;Kim, Doo-Hyun;Kim, Jung-Guk;Chang, Chun-Hyon
    • Journal of Computing Science and Engineering
    • /
    • v.2 no.4
    • /
    • pp.357-374
    • /
    • 2008
  • Over the past few decades, a considerable number of studies have been conducted on the technologies to build an UAV (Unmanned Aerial Vehicle) control system. Today, focus in research has moved from a standalone control system towards a network-centric control system for multiple UAV systems. Enabling the design of such complex systems in easily understandable forms that are amenable to rigorous analysis is a highly desirable goal. In this paper, we discuss our experimental evaluation of the Time-triggered Message-triggered Object (TMO) structuring scheme in the design of the UAV control system. The TMO scheme enables high-level structuring together with design-time guaranteeing of accurate timings of various critical control actions with significantly smaller efforts than those required when using lower-level structuring schemes based on direct programming of threads, UDP invocations, etc. Our system was validated by use of environment simulator developed based on an open source flight simulator named FlightGear. The TMO-structured UAV control software running on a small computing platform was easily connected to a simulator of the surroundings of the control system, i.e., the rest of the UAV and the flight environment. Positive experiences in both the TMO-structured design and the validation are discussed along with potentials for future expansion in this paper.

Fault-Tolerant Control System for Unmanned Aerial Vehicle Using Smart Actuators and Control Allocation (지능형 액추에이터와 제어면 재분배를 이용한 무인항공기 고장대처 제어시스템)

  • Yang, In-Seok;Kim, Ji-Yeon;Lee, Dong-Ik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.10
    • /
    • pp.967-982
    • /
    • 2011
  • This paper presents a FTNCS (Fault-Tolerant Networked Control System) that can tolerate control surface failure and packet delay/loss in an UAV (Unmanned Aerial Vehicle). The proposed method utilizes the benefits of self-diagnosis by smart actuators along with the control allocation technique. A smart actuator is an intelligent actuation system combined with microprocessors to perform self-diagnosis and bi-directional communications. In the event of failure, the smart actuator provides the system supervisor with a set of actuator condition data. The system supervisor then compensate for the effect of faulty actuators by re-allocating redundant control surfaces based on the provided actuator condition data. In addition to the compensation of faulty actuators, the proposed FTNCS also includes an efficient algorithm to deal with network induced delay/packet loss. The proposed algorithm is based on a Lagrange polynomial interpolation method without any mathematical model of the system. Computer simulations with an UAV show that the proposed FTNCS can achieve a fast and accurate tracking performance even in the presence of actuator faults and network induced delays.

Design of Navigation System for Low Cost Unmanned Aerial Vehicle (저가형 무인항공기 운용을 위한 항법시스템 설계)

  • Lee, Jang-Ho;Kim, Sung-Pil;Park, Mu-Hyeok;Ahn, Iee-Ki
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.2
    • /
    • pp.105-111
    • /
    • 2004
  • This paper describes the design of navigation system for an unmanned target drone which is operated by Korean army as for anti-air gun shooting training. Current target drone is operated by pilot control of on-board servo motor via remote control system. Automatic flight control system for the target drone greatly reduces work load of ground pilot and can increase application area of the drone. Most UAVs being operated nowdays use high-priced sensors as AHRS and IMU to measure the attitude, but those are costly. This paper introduces the development of low-cost automatic flight control system with low-cost sensors. The integrated automatic flight control system has been developed by integrating combining power module, switching module, monitoring module and RC receiver as an one module. The performance of navigation for low cost unmanned aerial vehicle, unmanned target drone as our test bed in this paper is verified by both Hardware in the loop simulation(HILS) to test performance of GPS as GPS output frequency high and results of flight test.

  • PDF