• Title/Summary/Keyword: Unknown protein

Search Result 628, Processing Time 0.034 seconds

Magnaporthe oryzae Effector AVR-Pii Helps to Establish Compatibility by Inhibition of the Rice NADP-Malic Enzyme Resulting in Disruption of Oxidative Burst and Host Innate Immunity

  • Singh, Raksha;Dangol, Sarmina;Chen, Yafei;Choi, Jihyun;Cho, Yoon-Seong;Lee, Jea-Eun;Choi, Mi-Ok;Jwa, Nam-Soo
    • Molecules and Cells
    • /
    • v.39 no.5
    • /
    • pp.426-438
    • /
    • 2016
  • Plant disease resistance occurs as a hypersensitive response (HR) at the site of attempted pathogen invasion. This specific event is initiated in response to recognition of pathogen-associated molecular pattern (PAMP) and subsequent PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI). Both PTI and ETI mechanisms are tightly connected with reactive oxygen species (ROS) production and disease resistance that involves distinct biphasic ROS production as one of its pivotal plant immune responses. This unique oxidative burst is strongly dependent on the resistant cultivars because a monophasic ROS burst is a hallmark of the susceptible cultivars. However, the cause of the differential ROS burst remains unknown. In the study here, we revealed the plausible underlying mechanism of the differential ROS burst through functional understanding of the Magnaporthe oryzae (M. oryzae) AVR effector, AVR-Pii. We performed yeast two-hybrid (Y2H) screening using AVR-Pii as bait and isolated rice NADP-malic enzyme2 (Os-NADP-ME2) as the rice target protein. To our surprise, deletion of the rice Os-NADP-ME2 gene in a resistant rice cultivar disrupted innate immunity against the rice blast fungus. Malic enzyme activity and inhibition studies demonstrated that AVR-Pii proteins specifically inhibit in vitro NADP-ME activity. Overall, we demonstrate that rice blast fungus, M. oryzae attenuates the host ROS burst via AVR-Pii-mediated inhibition of Os-NADP-ME2, which is indispensable in ROS metabolism for the innate immunity of rice. This characterization of the regulation of the host oxidative burst will help to elucidate how the products of AVR genes function associated with virulence of the pathogen.

STRAW PRESERVATION UNDER WET CONDITION DURING MONSOON IN BANGLADESH: EFFECT OF PRESERVING WET STRAW WITH UREA ON ITS KEEPING QUALITY AND NUTRITIVE VALUE IN CATTLE WHEN FED ALONE OR SUPPLEMENTED WITH CONCENTRATE

  • Chowdhury, S.A.;Huque, K.S.;Haque, M.E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.3
    • /
    • pp.319-329
    • /
    • 1996
  • During the monsoon in Bangladesh, the possibility of preserving wet ($700g\;H_2O$) straw by urea (50 g/kg straw DM) with or without polythene cover has been studied. The quality of preserved straw (PS) in terms of colour, smell and fungal infestation were recorded. Nutritive value of the PS was compared to that of a dry straw (DS) in two separate feeding trials on growing bulls (about 290 kg) without (Expt. 1) or with (Expt. 2) concentrate supplements. Over 96% of the wet straw was excellently preserved for over 5 months when covered with polythene in horizontal heaps (of appx. 4 tons). Whereas only 33% of the straw was well preserved in the uncovered (dome shaped) heaps (of approximately 9.5 tons). Each ton of wet straw costed Tk. 1413 and its preservation cost incurred Tk. 345. Urea preservation increased the crude protein content (95 vs. 50 g/kg), dry matter (DM) degradability at all (8, 16, 24, 48, 72 and 96) hours of incubation and at 48 hours, DM degradability (%) were 45 and 25 respetively for the PS and the DS. When fed alone, DM intake (75 vs. $106g/kg\;W^{0.75}/d$), total microbial N yield (27 vs. 54 g/d) and growth rate (-379 vs. 283 g/d) were higher (p < 0.01) in the PS than the DS. Supplementation of concentrate reduced the straw DM intake both in the DS ($51g/kg\;W^{0.75}/d$) and the PS ($958g/kg\;W^{0.75}/d$), but the substitution rate (SR%) was higher in the PS (42) than the DS (27). Higher substitution rate was probably responsible for the reduction in the differences between the DS and PS in their nutrient digestibilities, total microbial N yield (62 vs. 64 g/d) and growth rate(669 vs 339 g/d) when supplemented with concentrate. On 28th day of Expt. 2, feeding PS from one of the polythene covered heaps resulted nervous disorder due to unknown reason(s). Further studies on the effect of size and shape of heap on the preservation quality need to be determined.

Protein target identification of ginsenosides in skeletal muscle tissues: discovery of natural small-molecule activators of muscle-type creatine kinase

  • Chen, Feiyan;Zhu, Kexuan;Chen, Lin;Ouyang, Liufeng;Chen, Cuihua;Gu, Ling;Jiang, Yucui;Wang, Zhongli;Lin, Zixuan;Zhang, Qiang;Shao, Xiao;Dai, Jianguo;Zhao, Yunan
    • Journal of Ginseng Research
    • /
    • v.44 no.3
    • /
    • pp.461-474
    • /
    • 2020
  • Background: Ginseng effectively reduces fatigue in both animal models and clinical trials. However, the mechanism of action is not completely understood, and its molecular targets remain largely unknown. Methods: By screening for proteins that interact with the primary components of ginseng (ginsenosides) in an affinity chromatography assay, we have identified muscle-type creatine kinase (CK-MM) as a potential target in skeletal muscle tissues. Results: Biolayer interferometry analysis showed that ginsenoside metabolites, instead of parent ginsenosides, had direct interaction with recombinant human CK-MM. Subsequently, 20(S)-protopanaxadiol (PPD), which is a ginsenoside metabolite and displayed the strongest interaction with CK-MM in the study, was selected as a representative to confirm direct binding and its biological importance. Biolayer interferometry kinetics analysis and isothermal titration calorimetry assay demonstrated that PPD specifically bound to human CK-MM. Moreover, the mutation of key amino acids predicted by molecular docking decreased the affinity between PPD and CK-MM. The direct binding activated CK-MM activity in vitro and in vivo, which increased the levels of tissue phosphocreatine and strengthened the function of the creatine kinase/phosphocreatine system in skeletal muscle, thus buffering cellular ATP, delaying exercise-induced lactate accumulation, and improving exercise performance in mice. Conclusion: Our results suggest a cellular target and an initiating molecular event by which ginseng reduces fatigue. All these findings indicate PPD as a small molecular activator of CK-MM, which can help in further developing better CK-MM activators based on the dammarane-type triterpenoid structure.

Crystal Structure of the Regulatory Domain of AphB from Vibrio vulnificus, a Virulence Gene Regulator

  • Park, Nohra;Song, Saemee;Choi, Garam;Jang, Kyung Ku;Jo, Inseong;Choi, Sang Ho;Ha, Nam-Chul
    • Molecules and Cells
    • /
    • v.40 no.4
    • /
    • pp.299-306
    • /
    • 2017
  • The transcriptional activator AphB has been implicated in acid resistance and pathogenesis in the food borne pathogens Vibrio vulnificus and Vibrio cholerae. To date, the full-length AphB crystal structure of V. cholerae has been determined and characterized by a tetrameric assembly of AphB consisting of a DNA binding domain and a regulatory domain (RD). Although acidic pH and low oxygen tension might be involved in the activation of AphB, it remains unknown which ligand or stimulus activates AphB at the molecular level. In this study, we determine the crystal structure of the AphB RD from V. vulnificus under aerobic conditions without modification at the conserved cysteine residue of the RD, even in the presence of the oxidizing agent cumene hydroperoxide. A cysteine to serine amino acid residue mutant RD protein further confirmed that the cysteine residue is not involved in sensing oxidative stress in vitro. Interestingly, an unidentified small molecule was observed in the inter-subdomain cavity in the RD when the crystal was incubated with cumene hydroperoxide molecules, suggesting a new ligand-binding site. In addition, we confirmed the role of AphB in acid tolerance by observing an aphB-dependent increase in cadC transcript level when V. vulnificus was exposed to acidic pH. Our study contributes to the understanding of the AphB molecular mechanism in the process of recognizing the host environment.

Action Mechanisms of NANC Neurotransmitters in Smooth Muscle of Guinea Pig Ileum (기니픽의 회장평활근에서 NANC 신경전달물질의 작용기전)

  • Kim, Jong-Hoon;Kang, Bok-Soon;Lee, Young-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.783-796
    • /
    • 1997
  • The relaxation induced by stimulation of the inhibitory non-adrenergic, non-cholinergic (iNANC) nerve is mediated by the release of iNANC neurotransmitters such as nitric oxide (NO), vasoactive intestinal peptide (VIP) and adenosine triphosphate (ATP). The mechanisms of NO, VIP or ATP-induced relaxation have been partly determined in previous studies, but the detailed mechanism remains unknown. We tried to identify the nature of iNANC neurotransmitters in the smooth muscle of guinea pig ileum and to determine the mechanism of the inhibitory effect of nitric oxide. We measured the effect of NO-donors VIP and ATP on the intracellular $Ca^{2+}$ concentration$([Ca^{2+}]_i)$, by means of a fluorescence dye(fura 2) and tension simultaneously in the isolated guinea pig ileal smooth muscle. Following are the results obtained. 1. Sodium nitroprusside $(SNP:10^{-5}\;M)$ or S -nitro-N-acetyl-penicillamine $(SNP:10^{-5}\;M)$ decreased resting $[Ca^{2+}]_i$ I and tension of muscle. SNP or SNAP also inhibited rhythmic oscillation of $[Ca^{2+}]_i$ and tension. In 40mM $K^+$ solution or carbachol ($(CCh:10^{-6}\;M)$-induced precontracted muscle, SNP decreased muscle tension. VIP did not change $[Ca^{2+}]_i$ and tension in the resting or precontracted muscle, but ATP increased resting $[Ca^{2+}]_i$ and tension in the resting muscle. 2. 1H-[1,2,4]oxadiazol(4,3-a)quinoxalin-1-one $(ODQ:1\;{\mu}M)$, a specific inhibitor of soluble guanylate cyclase, limited the inhibitory effect of SNP 3. Glibenclamide $(10\;{\mu}M)$, a blocker of $K_{ATP}$ channel, and 4-aminopyridine (4-AP:5 mM), a blocker of delayed rectifier K channel, apamin $(0.1\;{\mu}M)$, a blocker of small conductance $K_{Ca}$ channel had no effect on the inhibitory effect of SNP. Iberiotoxin $(0.1\;{\mu}M)$, a blocker of large conductance $K_{Ca}$ channel, significantly increased the resting $[Ca^{2+}]_i$, and tension, and limited the inhibitory effect of SNP. 4. Nifedipine $(1\;{\mu}M)$ or elimination of external $Ca^{2+}$ decreased not only resting $[Ca^{2+}]_i$ and tension but also oscillation of $[Ca^{2+}]_i$ and tension. Ryanodine $(5\;{\mu}M)$ and cyclopiazonic acid $(10\;{\mu}M)$ decreased oscillation of $[Ca^{2+}]_i$ and tension. 5. SNP decreased $Ca^{2+}$ sensitivity of contractile protein. In conclusion, these results suggest that 1) NO is an inhibitory neurotransmitter in the guinea pig ileum, 2) the inhibitory effect of SNP on the $[Ca^{2+}]_i$ and tension of the muscle is due to a decrease in $[Ca^{2+}]_i$ by activation of the large conductance $K_{Ca}$ channel and a decrease in the sensitivity of contractile elements to $Ca^{2+}$ through activation of G-kinase.

  • PDF

Increased Cellular NAD+ Level through NQO1 Enzymatic Action Has Protective Effects on Bleomycin-Induced Lung Fibrosis in Mice

  • Oh, Gi-Su;Lee, Su-Bin;Karna, Anjani;Kim, Hyung-Jin;Shen, AiHua;Pandit, Arpana;Lee, SeungHoon;Yang, Sei-Hoon;So, Hong-Seob
    • Tuberculosis and Respiratory Diseases
    • /
    • v.79 no.4
    • /
    • pp.257-266
    • /
    • 2016
  • Background: Idiopathic pulmonary fibrosis is a common interstitial lung disease; it is a chronic, progressive, and fatal lung disease of unknown etiology. Over the last two decades, knowledge about the underlying mechanisms of pulmonary fibrosis has improved markedly and facilitated the identification of potential targets for novel therapies. However, despite the large number of antifibrotic drugs being described in experimental pre-clinical studies, the translation of these findings into clinical practices has not been accomplished yet. NADH:quinone oxidoreductase 1 (NQO1) is a homodimeric enzyme that catalyzes the oxidation of NADH to $NAD^+$ by various quinones and thereby elevates the intracellular $NAD^+$ levels. In this study, we examined the effect of increase in cellular $NAD^+$ levels on bleomycin-induced lung fibrosis in mice. Methods: C57BL/6 mice were treated with intratracheal instillation of bleomycin. The mice were orally administered with ${\beta}$-lapachone from 3 days before exposure to bleomycin to 1-3 weeks after exposure to bleomycin. Bronchoalveolar lavage fluid (BALF) was collected for analyzing the infiltration of immune cells. In vitro, A549 cells were treated with transforming growth factor ${\beta}1$ (TGF-${\beta}1$) and ${\beta}$-lapachone to analyze the extracellular matrix (ECM) and epithelial-mesenchymal transition (EMT). Results: ${\beta}$-Lapachone strongly attenuated bleomycin-induced lung inflammation and fibrosis, characterized by histological staining, infiltrated immune cells in BALF, inflammatory cytokines, fibrotic score, and TGF-${\beta}1$, ${\alpha}$-smooth muscle actin accumulation. In addition, ${\beta}$-lapachone showed a protective role in TGF-${\beta}1$-induced ECM expression and EMT in A549 cells. Conclusion: Our results suggest that ${\beta}$-lapachone can protect against bleomycin-induced lung inflammation and fibrosis in mice and TGF-${\beta}1$-induced EMT in vitro, by elevating the $NAD^+$/NADH ratio through NQO1 activation.

MiR-204 acts as a potential therapeutic target in acute myeloid leukemia by increasing BIRC6-mediated apoptosis

  • Wang, Zhiguo;Luo, Hong;Fang, Zehui;Fan, Yanling;Liu, Xiaojuan;Zhang, Yujing;Rui, Shuping;Chen, Yafeng;Hong, Luojia;Gao, Jincheng;Zhang, Mei
    • BMB Reports
    • /
    • v.51 no.9
    • /
    • pp.444-449
    • /
    • 2018
  • Acute myeloid leukemia (AML) is one of the most common hematological malignancies all around the world. MicroRNAs have been determined to contribute various cancers initiation and progression, including AML. Although microRNA-204 (miR-204) exerts anti-tumor effects in several kinds of cancers, its function in AML remains unknown. In the present study, we assessed miR-204 expression in AML blood samples and cell lines. We also investigated the effects of miR-204 on cellular function of AML cells and the underlying mechanisms of the action of miR-204. Our results showed that miR-204 expression was significantly downregulated in AML tissues and cell lines. In addition, overexpression of miR-204 induced growth inhibition and apoptosis in AML cells, including AML5, HL-60, Kasumi-1 and U937 cells. Cell cycle analysis further confirmed an augmentation in theapoptotic subG1 population by miR-204 overexpression. Mechanistically, baculoviral inhibition of apoptosis protein repeat containing 6 (BIRC6) was identified as a direct target of miR-204. Enforcing miR-204 expression increased the luciferase activity and expression of BIRC6, as well as p53 and Bax expression. Moreover, restoration of BIRC6 reversed the pro-apoptotic effects of miR-204 overexpression in AML cells. Taken together, this study demonstrates that miR-204 causes AML cell apoptosis by targeting BIRC6, suggesting miR-204 may play an anti-carcinogenic role in AML and function as a novel biomarker and therapeutic target for the treatment of this disease.

PKHD1 Gene Silencing May Cause Cell Abnormal Proliferation through Modulation of Intracellular Calcium in Autosomal Recessive Polycystic Kidney Disease

  • Yang, Ji-Yun;Zhang, Sizhong;Zhou, Qin;Guo, Hong;Zhang, Ke;Zheng, Rong;Xiao, Cuiying
    • BMB Reports
    • /
    • v.40 no.4
    • /
    • pp.467-474
    • /
    • 2007
  • Autosomal recessive polycystic kidney disease (ARPKD) is one of the important genetic disorders in pediatric practice. Mutation of the polycystic kidney and hepatic disease gene 1 (PKHD1) was identified as the cause of ARPKD. The gene encodes a 67-exon transcript for a large protein of 4074 amino acids termed fibrocystin, but its function remains unknown. The neoplastic-like in cystic epithelial proliferation and the epidermal growth factor/epidermal growth factor receptor (EGF/EGFR) axis overactivity are known as the most important characteristics of ARPKD. Since the misregulation of $Ca^{2+}$ signaling may lead to aberrant structure and function of the collecting ducts in kidney of rat with ARPKD, present study aimed to investigate the further mechanisms of abnormal proliferation of cystic cells by inhibition of PKHD1 expression. For this, a stable PKHD1-silenced HEK-293T cell line was established. Then cell proliferation rates, intracellular $Ca^{2+}$ concentration and extracellular signal-regulated kinase 1/2 (ERK1/2) activity were assessed after treatment with EGF, a calcium channel blocker and agonist, verapamil and Bay K8644. It was found that PKHD1-silenced HEK-293T cell lines were hyperproliferative to EGF stimulation. Also PKHD1-silencing lowered the intracellular $Ca^{2+}$ and caused EGF-induced ERK1/2 overactivation in the cells. An increase of intracellular $Ca^{2+}$ in PKHD1-silenced cells repressed the EGF-dependent ERK1/2 activation and the hyperproliferative response to EGF stimulation. Thus, inhibition of PKHD1 can cause EGF-induced excessive proliferation through decreasing intracellular $Ca^{2+}$ resulting in EGF-induced ERK1/2 activation. Our results suggest that the loss of fibrocystin may lead to abnormal proliferation in kidney epithelial cells and cyst formation in ARPKD by modulation of intracellular $Ca^{2+}$.

Requirement for ERK Activity in Sodium Selenite-induced Apoptosis of Acute Promyelocytic Leukemia-derived NB4 Cells

  • Han, Bingshe;Wei, Wei;Hua, Fangyuan;Cao, Tingming;Dong, Hua;Yang, Tao;Yang, Yang;Pan, Huazhen;Xu, Caimin
    • BMB Reports
    • /
    • v.40 no.2
    • /
    • pp.196-204
    • /
    • 2007
  • Our previous study has shown that sodium selenite can cause apoptosis in acute promyelocytic leukemia-derived NB4 cells in a caspase-dependent manner, but the detailed mechanism is unknown. Here we demonstrate a requirement for extracellular signal-regulated protein kinase (ERK) in mediating sodium selenite -induced apoptosis in NB4 cell. Though no apparent elevation of ERK activity was observed during the apoptosis in NB4 cells caused by 20 μM sodium selenite treatment, PD98059 and U0126, specific chemical inhibitors of the MEK/ERK signaling pathway, were shown to strongly prevent the apoptosis process, while ERK activator TPA enhanced the process. It is also known that p38 MAPK inhibitor SB203580 and JNK inhibitor SP600125 had slight effects on apoptosis. Further study indicated that ERK exerted its proapoptotic effect only at the early stage of apoptosis and played an antiapoptotic role at the later stages. Taken together, our findings suggest that ERK plays an active role in mediating sodium seleniteinduced apoptosis in NB4 cells .

Modulation of Inflammatory Cytokines and Islet Morphology as Therapeutic Mechanisms of Basella alba in Streptozotocin-Induced Diabetic Rats

  • Arokoyo, Dennis S.;Oyeyipo, Ibukun P.;Du Plessis, Stefan S.;Chegou, Novel N.;Aboua, Yapo G.
    • Toxicological Research
    • /
    • v.34 no.4
    • /
    • pp.325-332
    • /
    • 2018
  • The mechanism of the previously reported antidiabetic effect of Basella alba is unknown. This study investigated the role of B. alba aqueous leaf extract in the modulation of inflammatory cytokines and islet morphology in streptozotocin-induced diabetic rats. Forty male Wistar rats, between 8 and 10 weeks old, were randomly divided into four groups (n = 10) and administered the following treatments: Healthy control (H-c) and Diabetic control (D-c) animals received normal saline 0.5 mL/100 g body weight daily, while Healthy Treatment (H-Ba) and Diabetic Treatment (D-Ba) rats received the plant extract 200 mg/kg body weight daily. All treatments were administered by oral gavage. Diabetes was induced in D-c and D-Ba rats by a single intraperitoneal injection of streptozotocin (55 mg/kg body). The body weight and fasting blood sugar (FBS) levels were recorded every week for 4 weeks, after which the rats were euthanized and samples collected for further analysis. After the experiment, FBS level was significantly reduced (p < 0.0001) in rats in the D-Ba group, but increased (p < 0.001) in rats in the D-c group. The absolute (H-c and H-Ba vs D-c, p < 0.05) and relative (D-Ba vs H-c, p < 0.05; D-Ba vs H-Ba, p < 0.005) weights of the pancreases were significantly higher after the experiment. The rats in the D-c group had significantly higher levels of serum interleukin-$1{\beta}$ (p < 0.001 vs H-c; p < 0.05 vs H-Ba and D-Ba) and monocyte chemotactic protein-1 (p < 0.0001), but lower levels of interleukin-10 (p < 0.05) in comparison with the other groups. Histopathological examination revealed severe interstitial congestion, reduced islet area (p < 0.0001), and increased islet cell density in the D-c group compared with those in the D-Ba group. From these findings, it was concluded that the aqueous extract of B. alba stimulates the recovery of beta-islet morphology in streptozotocininduced diabetic rats by modulating the peripheral production of inflammatory cytokines.