• 제목/요약/키워드: Unknown protein

검색결과 628건 처리시간 0.022초

Functions of PUF Family RNA-Binding Proteins in Aspergillus nidulans

  • Son, Sung-Hun;Jang, Seo-Yeong;Park, Hee-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권5호
    • /
    • pp.676-685
    • /
    • 2021
  • RNA-binding proteins are involved in RNA metabolism and posttranscriptional regulation of various fundamental biological processes. The PUF family of RNA-binding proteins is highly conserved in eukaryotes, and its members regulate gene expression, mitochondrial biogenesis, and RNA processing. However, their biological functions in Aspergillus species remain mostly unknown in filamentous fungi. Here we have characterized the puf genes in the model organism Aspergillus nidulans. We generated deletion mutant strains for the five putative puf genes present in the A. nidulans genome and investigated their developmental phenotypes. Deletion of pufA or pufE affected fungal growth and asexual development. pufA mutants exhibited decreased production of asexual spores and reduced mRNA expression of genes regulating asexual development. The pufE deletion reduced colony growth, increased formation of asexual spores, and delayed production of sexual fruiting bodies. In addition, the absence of pufE reduced both sterigmatocystin production and the mRNA levels of genes in the sterigmatocystin cluster. Finally, pufE deletion mutants showed reduced trehalose production and lower resistance to thermal stress. Overall, these results demonstrate that PufA and PufE play roles in the development and sterigmatocystin metabolism in A. nidulans.

SHORT-ROOT Controls Cell Elongation in the Etiolated Arabidopsis Hypocotyl

  • Dhar, Souvik;Kim, Jinkwon;Yoon, Eun Kyung;Jang, Sejeong;Ko, Kangseok;Lim, Jun
    • Molecules and Cells
    • /
    • 제45권4호
    • /
    • pp.243-256
    • /
    • 2022
  • Transcriptional regulation, a core component of gene regulatory networks, plays a key role in controlling individual organism's growth and development. To understand how plants modulate cellular processes for growth and development, the identification and characterization of gene regulatory networks are of importance. The SHORT-ROOT (SHR) transcription factor is known for its role in cell divisions in Arabidopsis (Arabidopsis thaliana). However, whether SHR is involved in hypocotyl cell elongation remains unknown. Here, we reveal that SHR controls hypocotyl cell elongation via the transcriptional regulation of XTH18, XTH22, and XTH24, which encode cell wall remodeling enzymes called xyloglucan endotransglucosylase/hydrolases (XTHs). Interestingly, SHR activates transcription of the XTH genes, independently of its partner SCARECROW (SCR), which is different from the known mode of action. In addition, overexpression of the XTH genes can promote cell elongation in the etiolated hypocotyl. Moreover, confinement of SHR protein in the stele still induces cell elongation, despite the aberrant organization in the hypocotyl ground tissue. Therefore, it is likely that SHR-mediated growth is uncoupled from SHR-mediated radial patterning in the etiolated hypocotyl. Our findings also suggest that intertissue communication between stele and endodermis plays a role in coordinating hypocotyl cell elongation of the Arabidopsis seedling. Taken together, our study identifies SHR as a new crucial regulator that is necessary for cell elongation in the etiolated hypocotyl.

Urushiol V Suppresses Cell Proliferation and Enhances Antitumor Activity of 5-FU in Human Colon Cancer Cells by Downregulating FoxM1

  • Jeong, Ji Hye;Ryu, Jae-Ha
    • Biomolecules & Therapeutics
    • /
    • 제30권3호
    • /
    • pp.257-264
    • /
    • 2022
  • Colorectal cancer (CRC) is one of the most common malignant tumor. 5-FU is commonly used for the treatment of CRC. However, the development of drug resistance in tumor chemotherapy can seriously reduce therapeutic efficacy of 5-FU. Recent data show that FoxM1 is associated with 5-FU resistance in CRC. FoxM1 plays a critical role in the carcinogenesis and drug resistance of several malignancies. It has been reported that urushiol V isolated from the cortex of Rhus verniciflua Stokes is cytotoxic to several types of cancer cells. However, the underlying molecular mechanisms for its antitumor activity and its potential to attenuate the chemotherapeutic resistance in CRC cells remain unknown. Here, we found that urushiol V could inhibit the cell proliferation and induced S-phase arrest of SW480 colon cancer cells. It inhibited protein expression level of FoxM1 through activation of AMPK. We also investigated the combined effect of urushiol V and 5-FU. The combination treatment reduced FoxM1 expression and consequently reduced cell growth and colony formation in 5-FU resistant colon cancer cells (SW480/5-FUR). Taken together, these result suggest that urushiol V from Rhus verniciflua Stokes can suppress cell proliferation by inhibiting FoxM1 and enhance the antitumor capacity of 5-FU. Therefore, urushiol V may be a potential bioactive compound for CRC therapy.

Melatonin inhibits glycolysis in hepatocellular carcinoma cells by downregulating mitochondrial respiration and mTORC1 activity

  • Lee, Seunghyeong;Byun, Jun-Kyu;Kim, Na-Young;Jin, Jonghwa;Woo, Hyein;Choi, Yeon-Kyung;Park, Keun-Gyu
    • BMB Reports
    • /
    • 제55권9호
    • /
    • pp.459-464
    • /
    • 2022
  • Various mechanisms have been suggested to explain the chemopreventive and tumor-inhibitory effects of melatonin. Despite the growing evidence supporting melatonin-induced mitochondrial dysfunction, it remains largely unknown how this phenomenon modulates metabolic reprogramming in cancer cells. The aim of our study was to identify the mechanism underlying the anti-proliferative and apoptotic effects of melatonin, which is known to inhibit glycolysis. We analyzed the time-dependent effects of melatonin on mitochondrial respiration and glycolysis in liver cancer cells. The results showed that from a cell bioenergetic point of view, melatonin caused an acute reduction in mitochondrial respiration, however, increased reactive oxygen species production, thereby inhibiting mTORC1 activity from an early stage post-treatment without affecting glycolysis. Nevertheless, administration of melatonin for a longer time reduced expression of c-Myc protein, thereby suppressing glycolysis via downregulation of HK2 and LDHA. The data presented herein suggest that melatonin suppresses mitochondrial respiration and glycolysis simultaneously in HCC cells, leading to anti-cancer effects. Thus, melatonin can be used as an adjuvant agent for therapy of liver cancer.

Phosphorylation of REPS1 at Ser709 by RSK attenuates the recycling of transferrin receptor

  • Kim, Seong Heon;Cho, Jin-hwa;Park, Bi-Oh;Park, Byoung Chul;Kim, Jeong-Hoon;Park, Sung Goo;Kim, Sunhong
    • BMB Reports
    • /
    • 제54권5호
    • /
    • pp.272-277
    • /
    • 2021
  • RalBP1 associated EPS domain containing 1 (REPS1) is conserved from Drosophila to humans and implicated in the endocytic system. However, an exact role of REPS1 remains largely unknown. Here, we demonstrated that mitogen activated protein kinase kinase (MEK)-p90 ribosomal S6 Kinase (RSK) signaling pathway directly phosphorylated REPS1 at Ser709 upon stimulation by epidermal growth factor (EGF) and amino acid. While REPS2 is known to be involved in the endocytosis of EGF receptor (EGFR), REPS1 knockout (KO) cells did not show any defect in the endocytosis of EGFR. However, in the REPS1 KO cells and the KO cells reconstituted with a non-phosphorylatable REPS1 (REPS1 S709A), the recycling of transferrin receptor (TfR) was attenuated compared to the cells reconstituted with wild type REPS1. Collectively, we suggested that the phosphorylation of REPS1 at S709 by RSK may have a role of the trafficking of TfR.

Hypoxic exposure can improve blood glycemic control in high-fat diet-induced obese mice.

  • Park, Yeram;Jang, Inkwon;Park, Hun-Young;Kim, Jisu;Lim, Kiwon
    • 운동영양학회지
    • /
    • 제24권1호
    • /
    • pp.19-23
    • /
    • 2020
  • [Purpose] Blood glucose and insulin resistance were lower following hypoxic exposure in previous studies. However, the effect of hypoxia as therapy in obese model has not been unknown. [Methods] Six-week-old mice were randomly divided into chow diet (n=10) and high-fat diet (HFD) groups (n=20). The chow diet group received a non-purified commercial diet (65 % carbohydrate, 21 % protein, and 14 % fat) and water ad libitum. The HFD group was fed an HFD (Research Diet, #D12492; 60% kcal from fat, 5.24 kcal/g). Both groups consumed their respective diet for 7 weeks. Subsequently, HFD-induced mice (12-weeks-old) were randomly divided into two treatment groups : HFD-Normoxia (HFD; n=10) and HFD-Hypoxia (HYP; n=10, fraction of inspired=14.6%). After treatment for 4 weeks, serum glucose, insulin and oral glucose tolerance tests (OGTT) were performed. [Results] Homeostatic model assessment values for insulin resistance (HOMA-IR) of the HYP group tended to be lower than the HFD group. Regarding the OGTT, the area under the curve was 13% lower for the HYP group than the HFD group. [Conclusion] Insulin resistance tended to be lower and glucose uptake capacity was significantly augmented under hypoxia. From a clinical perspective, exposure to hypoxia may be a practical method of treating obesity.

Silencing YY1 Alleviates Ox-LDL-Induced Inflammation and Lipid Accumulation in Macrophages through Regulation of PCSK9/ LDLR Signaling

  • Zhengyao Qian;Jianping Zhao
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권11호
    • /
    • pp.1406-1415
    • /
    • 2022
  • The formation of macrophage foam cells stimulated by oxidized low-density lipoprotein (ox-LDL) is deemed an important cause of atherosclerosis. Transcription factor Yin Yang 1 (YY1), which is a universally expressed multifunctional protein, is closely related to cell metabolism disorders such as lipid metabolism, sugar metabolism, and bile acid metabolism. However, whether YY1 is involved in macrophage inflammation and lipid accumulation still remains unknown. After mouse macrophage cell line RAW264.7 cells were induced by ox-LDL, YY1 and proprotein convertase subtilisin/kexin type 9 (PCSK9) expressions were found to be increased while low-density lipoprotein receptor (LDLR) expression was lowly expressed. Subsequently, through reverse transcription-quantitative polymerase chain reaction (RT-qPCR), Western blot analysis, Oil Red O staining and cholesterol quantification, it turned out that silencing of YY1 attenuated the inflammatory response and lipid accumulation in RAW264.7 cells caused by ox-LDL. Moreover, results from the JASPAR database, chromatin immunoprecipitation (ChIP) assay, luciferase reporter assay and Western blot analysis suggested that YY1 activated PCSK9 by binding to PCSK9 promoter and modulated the expression of LDLR in the downstream of PCSK9. In addition, the results of functional experiments demonstrated that the inhibitory effects of YY1 interference on ox-LDL-mediated macrophage inflammation and lipid accumulation were reversed by PCSK9 overexpression. To sum up, YY1 depletion inhibited its activation of PCSK9, thereby reducing cellular inflammatory response, cholesterol homeostasis imbalance, and lipid accumulation caused by ox-LDL.

DNA Damage Triggers the Activation of Immune Response to Viral Pathogens via Salicylic Acid in Plants

  • Hwi-Won Jeong;Tae Ho Ryu;Hyo-Jeong Lee;Kook-Hyung Kim;Rae-Dong Jeong
    • The Plant Pathology Journal
    • /
    • 제39권5호
    • /
    • pp.449-465
    • /
    • 2023
  • Plants are challenged by various pathogens throughout their lives, such as bacteria, viruses, fungi, and insects; consequently, they have evolved several defense mechanisms. In addition, plants have developed localized and systematic immune responses due to biotic and abiotic stress exposure. Animals are known to activate DNA damage responses (DDRs) and DNA damage sensor immune signals in response to stress, and the process is well studied in animal systems. However, the links between stress perception and immune response through DDRs remain largely unknown in plants. To determine whether DDRs induce plant resistance to pathogens, Arabidopsis plants were treated with bleomycin, a DNA damage-inducing agent, and the replication levels of viral pathogens and growth of bacterial pathogens were determined. We observed that DDR-mediated resistance was specifically activated against viral pathogens, including turnip crinkle virus (TCV). DDR increased the expression level of pathogenesis-related (PR) genes and the total salicylic acid (SA) content and promoted mitogen-activated protein kinase signaling cascades, including the WRKY signaling pathway in Arabidopsis. Transcriptome analysis further revealed that defense-and SA-related genes were upregulated by DDR. The atm-2atr-2 double mutants were susceptible to TCV, indicating that the main DDR signaling pathway sensors play an important role in plant immune responses. In conclusion, DDRs activated basal immune responses to viral pathogens.

N-Terminal Modifications of Ubiquitin via Methionine Excision, Deamination, and Arginylation Expand the Ubiquitin Code

  • Nguyen, Kha The;Ju, Shinyeong;Kim, Sang-Yoon;Lee, Chang-Seok;Lee, Cheolju;Hwang, Cheol-Sang
    • Molecules and Cells
    • /
    • 제45권3호
    • /
    • pp.158-167
    • /
    • 2022
  • Ubiquitin (Ub) is post-translationally modified by Ub itself or Ub-like proteins, phosphorylation, and acetylation, among others, which elicits a variety of Ub topologies and cellular functions. However, N-terminal (Nt) modifications of Ub remain unknown, except the linear head-to-tail ubiquitylation via Nt-Met. Here, using the yeast Saccharomyces cerevisiae and an Nt-arginylated Ub-specific antibody, we found that the detectable level of Ub undergoes Nt-Met excision, Nt-deamination, and Nt-arginylation. The resulting Nt-arginylated Ub and its conjugated proteins are upregulated in the stationary-growth phase or by oxidative stress. We further proved the existence of Nt-arginylated Ub in vivo and identified Nt-arginylated Ub-protein conjugates using stable isotope labeling by amino acids in cell culture (SILAC)-based tandem mass spectrometry. In silico structural modeling of Nt-arginylated Ub predicted that Nt-Arg flexibly protrudes from the surface of the Ub, thereby most likely providing a docking site for the factors that recognize it. Collectively, these results reveal unprecedented Nt-arginylated Ub and the pathway by which it is produced, which greatly expands the known complexity of the Ub code.