• Title/Summary/Keyword: Unknown protein

Search Result 628, Processing Time 0.037 seconds

A $G_{4}$ Sequence within PHR1 Promoter Acts as a Gate for Cross-Talks between Damage-Signaling Pathway and Multi-Stress Response

  • Jang, Yeun-Kyu;Kim, Eun-Mi;Park, Sang-Dai
    • Animal cells and systems
    • /
    • v.6 no.3
    • /
    • pp.271-275
    • /
    • 2002
  • Rph1 and Gisl are damage-responsive repressors involved in PHR1 expression. They have two $C_{2}$H/ sub 2/ zinc finger motifs as putative DNA binding domains and N-terminal conserved domain with unknown function. They are also found in the human retinoblastoma binding protein 2 and the mouse jumonji- encoded protein. The repressors are able to bind to A $G_{4}$ sequence within a 39-bp sequence called upstream repressing sequence of PHR1 promoter (UR $S_{PHR1}$) responsible for the damage-response of PHR1. We report here that Rph1 is predominantly localized in the nucleus as examined by fluorescence microscopic analysis with GFP-Rph1 fusion protein. On the basis of the fact that the A $G_{4}$ sequence that is recognized by Rph1 and Gisl is also recognized by Msn2 and Msn4 in a process of stress response, we a1so tried to examine the in vivo function of A $G_{4}$ and the role of Msn2 and Msn4 in PHR1 expression. Our results demonstrate that Msn2 and Msn4 are actually required for the basal transcription of PHR1 expression but not for its damage induction. When A $G_{4}$ sequence was inserted into the minimal promoter of the cyc1-LacZ reporter, the increased LacZ expression was observed indicating its involvement in transcriptional activation. The data suggest that the A $G_{4}$ is primarily required for basal transcriptional activation of PHR1 or CYC1 promoter through the possible involvement of Msn2 and Msn4. However, since the A $G_{4}$ is also involved in the repression of PHR1 via Rphl and Gisl, it is proposed that A $G_{4}$ functions as either URS or upstream activating sequence (UAS) depending on the promoter context.t.

Dihydroceramide was Highly Elevated by the Fumonisin B1 and Desipramine in Sphingomonas chungbukensis

  • Burenjargal, Munkhtsatsral;Lee, Youn-Sun;Yoo, Jae-Myung;Choi, Mi-Hwa;Ji, So-Young;Lee, Yong-Moon;Kim, Young-Chang;Oh, Sei-Kwan;Yun, Yeo-Pyo;Yoo, Hwan-Soo
    • Biomolecules & Therapeutics
    • /
    • v.16 no.2
    • /
    • pp.100-105
    • /
    • 2008
  • The sphingolipid metabolites act as lipid mediator for cell proliferation and apoptosis in mammalian cells. In bacteria, sphingolipid metabolism remains unknown. The purpose of this study was to investigate whether sphingolipid metabolism is potential target for fumonisin $B_1$($FB_1$) and desipramine in Sphingomonas chungbukensis, Gram-negative bacteria, by comparing the intracellular contents of bacterial sphingolipids with ones of HIT-T15 ${\beta}$-cells, hamster pancreatic cells. The concentrations of ceramide and dihydroceramide were 18.0 ${\pm}$ 12.0 and 0.025 ${\pm}$ 0.018 nmol/mg protein, respectively, in HIT-T15 cells. However, the concentrations of ceramide and dihydroceramide in the bacterial culture were 2.0 ${\pm}$ 1.2 and 10.6 ${\pm}$ 5.5 nmol/mg protein, respectively. $FB_1$ decreased the level of ceramide from 18.0 to 3.8 nmol/mg protein in HIT-T15 ${\beta}$-cells. However, dihydroceramide content in $FB_1$-treated HIT-T15 cells was slightly decreased compared with the control culture. When S. chungbukensis was treated with either $FB_1$ or desipramine, dihydroceramide level was increased by 5- and 4-fold, respectively, compared with the control bacteria. These results indicate that $FB_1$ and desipramine may act as an activator in bacterial sphingolipid biosynthetic pathway, and bacterial sphingolipid metabolism pathway appears to be different from the pathway of mammalian cells.

Analysis of biological functions of rpt-1 in human cells with exposure to environmental pollutants (환경오염물질 폭로에 따른 인체세포에서의 rpt-1 발현 및 역할의 분석)

  • 김선영;양재호
    • Environmental Mutagens and Carcinogens
    • /
    • v.21 no.2
    • /
    • pp.164-168
    • /
    • 2001
  • Abel et al. in Germany discovered a new dioxin-responsive gene, which has later been identified as rpt-1 (regulatory protein T-lymphocyte 1). While it is speculated that rpt-1 may play a role in signal transduction and carcinogenesis, its roles and functions remain unknown. The present study attempted to analyze functions of rpt-1 in human epithelial cells following the xenobiotic exposures. While German counterpart analyzed expressionn of rpt-1 in spleen and thymus cells from mouse and rat and characterizes molecular properties of the gene, our work mainly focused on analyzing function of rpt-1 in human skin cells. Expression of rpt-1 in human cells were analyzed by western and northern blot RT-PCR analysis. Expression of rpt-1 as well as Staf-50 in human cells with or without exposure to environmental pollutants were also analyzed by northern blot analysis, since Staf-50 is homologous with rpt-1 and found in human cells. To help study roles of rpt-1 in human cell system, retroviral vector system carrying rpt-1 gene under the CMV promoter were constructed and transfected. Cells overexpressing the gene after the transfection showed an increase of cell density and soft agar colony formations, as compared to the control cells, suggesting that rpt-1 may play a certain role in the transformation processes of human cells. While the expression of rpt-1 in spleen and thymus is known to be strong in the laboratory animals, both the basal and TCDD-induced expression of rpt-1 in the current cellular system remained insignificant. It is speculated that the expression pattern of rpt-1 may be tissue- and species-specific. The present study demonstrated a strong expression of rpt-1 protein in the brain of SD rat model. Since there is no previous report on the expression of rpt-1 in the brain tissue, the result may play a significant role in understanding dioxin-induced neurotoxicities in the future. The present study provides an opportunity to understand a role of rpt-1 in human cell system and suggest a possible lead and basis for the future study of dioxin-induced neurotoxicities.

  • PDF

The Mitogen-Activated Protein Kinase Signal Transduction Pathways in Alternaria Species

  • Xu, Houjuan;Xu, Xiaoxue;Wang, Yu-Jun;Bajpai, Vivek K.;Huang, Lisha;Chen, Yongfang;Baek, Kwang-Hyun
    • The Plant Pathology Journal
    • /
    • v.28 no.3
    • /
    • pp.227-238
    • /
    • 2012
  • Mitogen-activated protein kinase (MAPK) cascades are conserved signaling modules in the eukaryotic cells. They are involved in many major cell processes in fungi such as stress responses, vegetative growth, pathogenicity, secondary metabolism and cell wall integrity. In this review, we summarized the advances of research on the MAPK signaling pathways in Alternaria species. As major phytopathogenic fungi, Alternaria species reduce crop production. In contrast to the five MAPK pathways known in yeast, only three MAPK pathways as Fus3/Kss1-type, Hog1-type, and Slt2-type have been characterized in Alternaria. The Fus3/Kss1-type MAPK pathway participates in regulation of vegetative growth, conidiation, production of some cell-wall-degrading enzymes and pathogenicity. The Hog1-type pathway is involved in osmotic and oxidative stress, fungicides susceptibility and pathogenicity. The Slt2-type MAP kinases play an important role on maintaining cell wall integrity, pathogenicity and conidiation. Although recent advances on the MAPK pathways in Alternaria spp. reveal many important features on the pathogenicity, there are many unsolved problems regarding to the unknown MAP kinase cascade components and network among other major signal transduction. Considering the economic loss induced by Alternaria spp., more researches on the MAPK pathways will need to control the Alternaria diseases.

Cloning and Expression of a Novel Chitosanase Gene (choK) from $\beta$-Proteobacterium KNU3 by Double Inverse PCR

  • Yi, Jae-Hyoung;Lee, Keun-Eok;Choi, Shin-Geon
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.563-569
    • /
    • 2004
  • The DNA sequence of the chitosanase gene (choK) from $\beta$-Proteobacterium KNU3 showed an 1,158-bp open reading frame that encodes a protein of 386 amino acids with a novel 74 signal peptide. The degenerated primers based on the partial deduced amino acid sequences from MALDI- TOF MS analyses yielded the 820 bp of the PCR product. Based on this information, double inverse PCR cloning experiments, which use the two specific sets of PCR primers rather than single set primers, identified the unknown 1.2 kb of the choK gene. Subsequently, a 1.8 kb of full choK gene was cloned from another PCR cloning experiment and it was then subcloned into pGEM T-easy and pUC18 vectors. The recombinant E. coli clone harboring recombinant pUC18 vector produced a clear halo around the colony in the glycol chitosan plates. The recombinant ChoK protein was secreted into medium in a mature form while the intracellular ChoK was produced without signal peptide cleavage. The activity staining of PAGE showed that the recombinant ChoK protein was identical to the chitosanase of wild-type. The comparison of deduced amino acid sequences of choK revealed that there is 92% identity with that of Sphingobacterium multivorum chitosanase. Judging from the conserved module in other bacterial chitosanases, chitosanase of KNU3 strain (ChoK) belongs to the family 80 of glycoside hydrolases.

Overexpression and Refolding of BACE2 (BACE2의 대량발현 및 리폴딩)

  • Park, Sun Joo;Tai, Shuaiqi;Lee, Yeon-Ji;Jeon, You-Jin;Kim, Yong-Tae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.4
    • /
    • pp.370-375
    • /
    • 2014
  • BACE2 is a membrane-bound aspartic protease that is highly homologous with BACE1. While BACE1 processes the amyloid precursor protein (APP) at a key step in generating ${\beta}$-amyloid peptide and presumably causes Alzheimer's disease (AD), BACE2 has not been demonstrated to be involved in APP processing directly, and its physiological functions are unknown. To determine its function and to develop inhibitors from marine sources, we constructed an overexpression vector for producing BACE2. The gene encoding human BACE2 protease was amplified using the polymerase chain reaction and cloned into the pET11a expression vector, resulting in pET11a/BACE2. Recombinant BACE2 protease was overexpressed successfully in E. coli as inclusion bodies, refolded using the rapid-dilution method, and purified via two-step fast protein liquid chromatography using Sephacryl S-300 gel filtration and Resource-Q column chromatography. The BACE2 protease produced was an active form. This study provides an efficient method not only for studying the basic properties of BACE2, but also for developing inhibitors from natural marine sources.

The Change of Secretory Activity of the Alveolar Type ll Cell During Acute Alveolar Injury Induced by N-Nitroso-N-Methylurethane

  • Lee, Young-Man;Bang, In-Sook;Lee, Suck-Kang
    • The Korean Journal of Physiology
    • /
    • v.28 no.1
    • /
    • pp.71-77
    • /
    • 1994
  • In the animal model of acute respiratory distress syndrome (ARDS) induced by N-nitroso-N-methylurethane (NNNMU) the secretory activity of alveolar type H cells during acute alveolar injury was investigated by determining phospholipid and pulmonary surfactant associated proteins in crude surfactant. The mechanism of the secretory change was studied by determination of DNA and RNA levels in the lung tissue. After induction of acute alveolar injury with NNNMU, pulmonary hemorrhage, atelectasis and gross hypertrophy were observed. Seven days after NNNMU treatment the level of total DNA in lung homogenate was increased markedly indicating that a hypertrophy was induced by cellular proliferation. Although the total DNA level increased, the RNA/DNA ratio was gradually decreased after NNNMU treatment. Seven days after NNNMU treatment the RNA/DNA ratio returned to the normal control level. During the acute alveolar injury, phospholipid and surfactant associated proteins were reduced significantly as compared with the control, implying that the secretory activity of alveolar type II cells was altered during acute alveolar injury induced by NNNMU. The protein content in crude surfactant during peak injury(7 days after NNNMU) was decreased significantly but phospholipid/protein ratios were identical in both control and NNNMU treatment groups. SDS-PAGE of proteins in crude pulmonary surfactant showed a decrease in major surfactant associated protein(M.W. 38,000) during acute alveolar injury. The present study may suggest that while alveolar type H cells proliferate markedly, transcription of alveolar type ll cell gene was inhibited by an unknown mechanism such as DNA methylation induced by NNNMU. Such an inhibition of transcriptional activity is thought to be associated with the decreased secretory activity of alveolar type ll cells, which may lead to pulmonary atelectasis and edema during the acute alveolar injury.

  • PDF

Tumor necrosis factor-inducible gene 6 interacts with CD44, which is involved in fate-change of hepatic stellate cells

  • Wang, Sihyung;Kim, Jieun;Lee, Chanbin;Jung, Youngmi
    • BMB Reports
    • /
    • v.53 no.8
    • /
    • pp.425-430
    • /
    • 2020
  • Tumor necrosis factor-inducible gene 6 protein (TSG-6) is a cytokine secreted by mesenchymal stem cells (MSCs) and regulates MSC stemness. We previously reported that TSG-6 changes primary human hepatic stellate cells (pHSCs) into stem-like cells by activating yes-associated protein-1 (YAP-1). However, the molecular mechanism behind the reprogramming action of TSG-6 in pHSCs remains unknown. Cluster of differentiation 44 (CD44) is a transmembrane protein that has multiple functions depending on the ligand it is binding, and it is involved in various signaling pathways, including the Wnt/β-catenin pathway. Given that β-catenin influences stemness and acts downstream of CD44, we hypothesized that TSG-6 interacts with the CD44 receptor and stimulates β-catenin to activate YAP-1 during TSG-6-mediated transdifferentiation of HSCs. Immunoprecipitation assays showed the interaction of TSG-6 with CD44, and immunofluorescence staining analyses revealed the colocalization of TSG-6 and CD44 at the plasma membrane of TSG-6-treated pHSCs. In addition, TSG-6 treatment upregulated the inactive form of phosphorylated glycogen synthase kinase (GSK)-3β, which is a negative regulator of β-catenin, and promoted nuclear accumulation of active/nonphosphorylated β-catenin, eventually leading to the activation of YAP-1. However, CD44 suppression in pHSCs following CD44 siRNA treatment blocked the activation of β-catenin and YAP-1, which inhibited the transition of TSG-6-treated HSCs into stem-like cells. Therefore, these findings demonstrate that TSG-6 interacts with CD44 and activates β-catenin and YAP-1 during the conversion of TSG-6-treated pHSCs into stem-like cells, suggesting that this novel pathway is an effective therapeutic target for controlling liver disease.

Visualization of Multicolored in vivo Organelle Markers for Co-Localization Studies in Oryza sativa

  • Dangol, Sarmina;Singh, Raksha;Chen, Yafei;Jwa, Nam-Soo
    • Molecules and Cells
    • /
    • v.40 no.11
    • /
    • pp.828-836
    • /
    • 2017
  • Eukaryotic cells consist of a complex network of thousands of proteins present in different organelles where organelle-specific cellular processes occur. Identification of the subcellular localization of a protein is important for understanding its potential biochemical functions. In the post-genomic era, localization of unknown proteins is achieved using multiple tools including a fluorescent-tagged protein approach. Several fluorescent-tagged protein organelle markers have been introduced into dicot plants, but its use is still limited in monocot plants. Here, we generated a set of multicolored organelle markers (fluorescent-tagged proteins) based on well-established targeting sequences. We used a series of pGWBs binary vectors to ameliorate localization and co-localization experiments using monocot plants. We constructed different fluorescent-tagged markers to visualize rice cell organelles, i.e., nucleus, plastids, mitochondria, peroxisomes, golgi body, endoplasmic reticulum, plasma membrane, and tonoplast, with four different fluorescent proteins (FPs) (G3GFP, mRFP, YFP, and CFP). Visualization of FP-tagged markers in their respective compartments has been reported for dicot and monocot plants. The comparative localization of the nucleus marker with a nucleus localizing sequence, and the similar, characteristic morphology of mCherry-tagged Arabidopsis organelle markers and our generated organelle markers in onion cells, provide further evidence for the correct subcellular localization of the Oryza sativa (rice) organelle marker. The set of eight different rice organelle markers with four different FPs provides a valuable resource for determining the subcellular localization of newly identified proteins, conducting co-localization assays, and generating stable transgenic localization in monocot plants.

Clinicopathologic and Prognostic Significance of Carboxyl Terminus of Hsp70-interacting Protein in HBV-related Hepatocellular Carcinoma

  • Jin, Ye;Zhou, Li;Liang, Zhi-Yong;Jin, Ke-Min;Zhou, Wei-Xun;Xing, Bao-Cai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3709-3713
    • /
    • 2015
  • Background: Many factors, including molecular ones, were demonstrated to be associated with long-term prognosis of hepatocellular carcinoma (HCC). Thus far, the expression and clinicopathologic and prognostic significance of the carboxyl terminus of Hsp70-interacting protein (CHIP) in B-type hepatitis virus (HBV)-related HCC remain unknown. Materials and Methods: CHIP expression was detected by immunohistochemical staining of surgical samples from 79 patients with HCC with HBsAg positivity. In addition, correlations with clinicopathologic parameters and patient survival were evaluated. Results: It was found that positive CHIP staining was observed in tumor, but not non-tumor, tissues. High expression of CHIP was significantly related to larger tumor size, with marginally significant associations noted for presence of portal vein invasion and higher serum a-fetoprotein level. In addition, univariate analysis showed that high CHIP expression was a powerful predictor for dismal overall and disease-free survival. However, independent prognostic implications of CHIP were not proven in multivariate Cox regression test. Conclusions: CHIP is overexpressed in HBV-related HCC and is associated with unfavorable biological behavior as well as poor prognosis. However, its prognostic role needs to be further validated.