• Title/Summary/Keyword: Unknown control direction

Search Result 49, Processing Time 0.027 seconds

Robust Low-complexity Design for Tracking Control of Uncertain Switched Pure-feedback Systems with Unknown Control Direction (미지의 방향성을 갖는 불확실한 스위치드 순궤환 시스템의 추종 제어를 위한 강인 저 복잡성 설계)

  • Lee, Seung-Woo;Yoo, Sung-Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.153-158
    • /
    • 2017
  • This paper investigates a robust low-complexity design problem for tracking control of uncertain switched pure-feedback systems in the presence of unknown control direction. The completely unknown non-affine nonlinearities are assumed to be arbitrarily switched. By combining the nonlinear error transformation technique and Nussbaum-type functions, a robust tracking controller is designed without using any adaptive function approximators. Thus, compared with existing results, the proposed control scheme has the low-complexity property. From Lyapunov stability theory, it is shown that the tracking error remains within the preassigned transient and steady-state error bounds.

Neural-networks-based Disturbance Observer and Tracker Design in the Presence of Unknown Control Direction and Non-affine Nonlinearities (미지의 제어 방향성과 비어파인 비선형성을 고려한 신경망 기반 외란 관측기와 추종기 설계)

  • Kim, Hyoung Oh;Yoo, Sung Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.666-671
    • /
    • 2017
  • A disturbance-observer-based adaptive neural tracker design problem is investigated for a class of perturbed uncertain non-affine nonlinear systems with unknown control direction. A nonlinear disturbance observer (NDO) design methodology using neural networks is presented to construct a tracking control scheme with the attenuation effect of an external disturbance. Compared with previous control results using NDO for nonlinear systems in non-affine form, the major contribution of this paper is to design a NDO-based adaptive tracker without the sign information of the control coefficient. The stability of the closed-loop system is analyzed in the sense of Lyapunov stability.

Development of the Robot's Gripper Control System using DSP (DSP 를 이용한 로봇의 그리퍼 제어장치의 개발)

  • Kim Gab-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.77-84
    • /
    • 2006
  • This paper describes the design and implementation of a robot's gripper control system. In order to safely grasp an unknown object using the robot's gripper, the gripper should detect the force of gripping direction and the force of gravity direction, and should perform the force control using the detected forces and the robot's gripper control system. In this paper, the robot's gripper control system is designed and manufactured using DSP(Digital Signal Processor), and the gripper is composed of two 6-axis force/moment sensors which measures the Fx force(force of x-direction), Fy force, Fz force, and the Mx moment(moment of x-direction), My moment, Mz moment at the same time. The response characteristic test of the system is performed to determine the proportional gain Kp and the integral gain Ki of PI controller. As a result, it is shown that the developed robot's gripper control system grasps an unknown object safely.

Design and fabrication of robot′s finger 3-axis force sensor for grasping an unknown object (미지물체를 잡기 위한 로봇 손가락의 3축 힘감지센서 설계 및 제작)

  • 김갑순
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.229-232
    • /
    • 2002
  • This paper describes the development of robot's finger 3-axis force sensor that detects the Fx, Fy, and Fz simultaneously fur stably grasping an unknown object. In order to safely grasp an unknown object using the robot's fingers, they should detect the force of gripping direction and the force of gravity direction, and perform the force control using the detected farces. The 3-axis force sensor that detects the Fx, Fy, and Fz simultaneously should be used for accurately detecting the weight of an unknown object of gravity direction. Thus, in this paper, robot's finger for stably grasping an unknown object is developed. And, the 3-axis farce sensor that detects the Fx, Fy, and Fz simultaneously fur constructing a robot's finger is newly modeled using several parallel-plate beams, and is fabricated. Also, it is calibrated, and evaluated.

  • PDF

Development of a 6-axis robot′s finger force/moment sensor for stable grasping of an unknown object

  • Kim, Gab-Soon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.3
    • /
    • pp.54-61
    • /
    • 2004
  • This paper describes the development of a 6-axis robot's finger force/moment sensor, which measures forces $F_x$(x-direction force), $F_y$and $F_z$, and moments $M_x$ (x-direction moment), $M_y$ and $M_z$ simultaneously, for stable grasping of an unknown object. In order to safely grasp an unknown object using the robot's gripper, the force in the gripping direction and the force in the gravity direction should be measured, and the force control should be performed using the measured forces. Also, the moments $M_x$, $M_y$ and $M_z$ to accurately perceive the position of the object in the grippers should be detected. Thus, the robot's gripper should be composed of 6-axis robot's finger force/moment sensor that can measure forces $F_x$, $F_y$ and $F_z$, and moments $M_x$ $M_y$ and $M_z$ simultaneously. In this paper, the 6-axis robot's finger force/moment sensor for measuring forces $F_x$, $F_y$ and $F_z$, and moments $M_x$ $M_y$ and $M_z$ simultaneously was newly modeled using several parallel-plate beams, designed, and fabricated. The characteristic test of the fabricated sensor was performed, and the result shows that interference errors of the developed sensor are less than 3%. Also, Robot's gripper with the 6-axis robot's finger force/moment sensor for the characteristic test of force control was manufactured, and the characteristic test for grasping an unknown object using the sensors was performed using it. The fabricated gripper could grasp an unknown object stably. Thus, the developed 6-axis robot's finger force/moment sensor can be used for robot's gripper.

Auto Path Generation and Active Compliance Force Control Using 3-axis Grinding Robot (3축 그라인딩 로봇을 이용한 자동 경로 생성 및 능동 컴플라이언스 힘 제어)

  • Choo, Jung-Hoon;Kim, Soo-Ho;Lee, Sang-Bum;Kim, Jung-Min
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.11
    • /
    • pp.1088-1094
    • /
    • 2006
  • In this paper, an auto path generation and an active compliance grinding control using 3-axis farce sensor are presented. These control algorithms enable the grinding robot to follow unknown path of various workpiece shape pattern. The robot is able to go grinding along unknown paths by position controller managing tangential direction angle and cutting speed, with only information about the start position and the end position. Magnitude and direction of normal force are calculated using force data that go through low pass filter. Moreover, normal and tangential directions are separated for force control and velocity control, respectively.

Development of a 6-axis Robot's Finger Force/Moment Sensor for Stably Grasping an Unknown Object (미지물체를 안전하게 잡기 위한 6축 로봇손가락 힘/모멘트센서의 개발)

  • 김갑순
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.105-113
    • /
    • 2003
  • This paper describes the development of a 6-axis robot's finger force/moment sensor, which measures forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously, for stably grasping an unknown object. In order to safely grasp an unknown object using the robot's gripper, it should measure the force in the gripping direction and the force in the gravity direction, and perform the force control using the measured forces. Thus, the robot's gripper should be composed of 6-axis robot's finger force/moment sensor that can measure forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously. In this paper, the 6-axis robot's finger force/moment sensor for measuring forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously was newly modeled using several parallel-plate beams, designed, and fabricated. The characteristic test of made sensor was performed. and the result shows that interference errors of the developed sensor are less than 3%. Also, Robot's gripper with the 6-axis robot's finger force/moment sensor for the characteristic test of force control was manufactured, and the characteristic test for grasping an unknown object was performed using it. The fabricated gripper could grasp an unknown object stably. Thus, the developed 6-axis robot's finger force/moment sensor may be used for robot's gripper.

Design of a Robot's Hand with Two 3-Axis Force Sensor for Grasping an Unknown Object

  • Kim, Gab-Soon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.3
    • /
    • pp.12-19
    • /
    • 2003
  • This paper describes the design of a robot's hand with two fingers for stably grasping an unknown object, and the development of a 3-axis force sensor for which is necessary to constructing the robot's fingers. In order to safely grasp an unknown object using the robot's fingers, they should measure the forces in the gripping and in the gravity directions, and control the measured forces. The 3-axis force sensor should be used for accurately measuring the weight of an unknown object in the gravity direction. Thus, in this paper, the robot's hand with two fingers for stably grasping an unknown object is designed, and the 3-axis force sensor is newly modeled and fabricated using several parallel-plate beams.

Development of the Intelligent Gripper Using Two 3-axis Force Sensor (3 축 힘센서를 이용한 지능형 그리퍼 개발)

  • Kim, Gab-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.3 s.192
    • /
    • pp.47-54
    • /
    • 2007
  • This paper describes the development of the intelligent gripper with two 3-axis force sensor that can measure forces Fx, Fy, Fz simultaneously, for stably grasping an unknown object. In order to grasp an unknown object using an intelligent gripper softly, it should measure the force in the gripping direction and the force in the gravity direction, and perform the force control using the measured farces. Thus, the intelligent gripper should be composed of 3-axis force sensor that can measure forces Fx, Fy, Fz at the same time. In this paper, the intelligent gripper with two 3-axis force sensor was manufactured and its characteristic test was carried out. The fabricated gripper could grasp an unknown object stably. Also, the sensing element of 3-axis force sensor was modeled and designed with five parallel-plate beams, and 3-axis force sensor for the intelligent gripper was fabricated. The characteristic test of the made sensor was carried out.

Autonomous Navigation for a Mobile Robot Using Navigation Guidance Direction and Fuzzy Control (주행 유도 방향과 퍼지 제어를 이용한 이동 로봇의 자율 주행)

  • Park, Ji-Gwan;Shin, Jin-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.108-114
    • /
    • 2014
  • This paper proposes a generation method of a navigation guidance direction and a fuzzy controller to achieve the autonomous navigation of a mobile robot using a particle swarm optimization(PSO) scheme in unknown environments. The proposed navigation guidance direction is the direction that leads a mobile robot to arrive a target point simultaneously with avoiding obstacles efficiently according to the surrounding local informations. It is generated by selecting the most suitable direction of the many directions in the surrounding environment using a particle swarm optimization scheme. Also, a robot can reach a target point with avoiding the various obstacles by controlling the robot so that it can move from its current orientation to the navigation guidance direction using the proposed fuzzy controller. Simulation results are presented to show the feasibility and validity of the proposed robot navigation scheme.