• Title/Summary/Keyword: Universal Software

Search Result 175, Processing Time 0.022 seconds

Shear behavior of non-persistent joints in concrete and gypsum specimens using combined experimental and numerical approaches

  • Haeri, Hadi;Sarfarazi, V.;Zhu, Zheming;Hokmabadi, N. Nohekhan;Moshrefifar, MR.;Hedayat, A.
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.221-230
    • /
    • 2019
  • In this paper, shear behavior of non-persistent joint surrounded in concrete and gypsum layers has been investigated using experimental test and numerical simulation. Two types of mixture were prepared for this study. The first type consists of water and gypsum that were mixed with a ratio of water/gypsum of 0.6. The second type of mixture, water, sand and cement were mixed with a ratio of 27%, 33% and 40% by weight. Shear behavior of a non-persistent joint embedded in these specimens is studied. Physical models consisting of two edge concrete layers with dimensions of 160 mm by 130 mm by 60 mm and one internal gypsum layer with the dimension of 16 mm by 13 mm by 6 mm were made. Two horizontal edge joints were embedded in concrete beams and one angled joint was created in gypsum layer. Several analyses with joints with angles of $0^{\circ}$, $30^{\circ}$, and $60^{\circ}$ degree were conducted. The central fault places in 3 different positions. Along the edge joints, 1.5 cm vertically far from the edge joint face and 3 cm vertically far from the edge joint face. All samples were tested in compression using a universal loading machine and the shear load was induced because of the specimen geometry. Concurrent with the experiments, the extended finite element method (XFEM) was employed to analyze the fracture processes occurring in a non-persistent joint embedded in concrete and gypsum layers using Abaqus, a finite element software platform. The failure pattern of non-persistent cracks (faults) was found to be affected mostly by the central crack and its configuration and the shear strength was found to be related to the failure pattern. Comparison between experimental and corresponding numerical results showed a great agreement. XFEM was found as a capable tool for investigating the fracturing mechanism of rock specimens with non-persistent joint.

A Study on the Improvement of Personal Identity Proofing Service Using an Alternative Method for Resident Registration Number Based on Electronic Signature (전자서명 기반의 주민등록번호 대체수단을 사용한 본인확인서비스 개선 방안에 대한 연구)

  • Kim, Jong Bae
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.3
    • /
    • pp.453-462
    • /
    • 2021
  • As the status of public certificates expired due to the recent revision of the Electronic Signature Act, electronic signature-based public certificates were also lost in the means of replacing resident registration numbers(RRN). As a result, public certification institutions have recently been designated by the Korea Communications Commission as identity verification service providers through a review of the designation of personal identity proofing agency based on alternative means of RRN. However, unlike existing RRN replacements such as i-PIN, mobile phones, and credit cards, the personal identity proofing process for applicants for certificates is different from existing alternatives. The proposed method shows that it is possible to protect users' personal information and provide universal, reasonable, and safe identification services by applying improvements to electronic signature-based personal identity proofing services.

Experimental and numerical studies of concrete bridge decks using ultra high-performance concrete and reinforced concrete

  • Shemirani, Alireza Bagher
    • Computers and Concrete
    • /
    • v.29 no.6
    • /
    • pp.407-418
    • /
    • 2022
  • This paper numerically investigates the effect of changes in the mechanical properties (displacement, strain, and stress) of the ultra-high-performance concrete (UHPC) without rebar and the reinforced concrete (RC) using steel re-bars. This reinforced concrete is mostly used in the concrete bridge decks. A mixture of sand, gravel, cement, water, steel fiber, superplasticizer, and micro silica was used to fabricate UHPC specimens. The extended finite element method as used in the ABAQUS software is applied for considering the mechanical properties of UHPC, RC, and ordinary concrete specimens. To calibrate the ABAQUS, some experimental tests have been carried out in the laboratory to measure the direct tensile strength of UHPC by the compressive-to-tensile load converting (CTLC) device. This device contains a concrete specimen and is mounted on a universal tensile testing apparatus. In the experiments, three types of mixed concrete were used for UHPC specimens. The tensile strength of these specimens ranges from 9.24 to 11.4 MPa, which is relatively high compared with ordinary concrete specimens, which have a tensile strength ranging from 2 to 5 MPa. In the experimental tests, the UHPC specimen of size 150×60×190 mm with a central hole of 75 mm (in diameter)×60 mm (in thickness) was specially made in the laboratory, and its direct tensile strength was measured by the CTLC device. However, the numerical simulation results for the tensile strength and failure mechanism of the UHPC were very close to those measured experimentally. From comparing the numerical and experimental results obtained in this study, it has been concluded that UHPC can be effectively used for bridge decks.

Phase Jitter Analysis of Overlapped Signals for All-to-All TWSTFT Operation

  • Juhyun Lee;Ju-Ik Oh;Joon Hyo Rhee;Gyeong Won Choi;Young Kyu Lee;Jong Koo Lee;Sung-hoon Yang
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.3
    • /
    • pp.245-255
    • /
    • 2023
  • Time comparison techniques are necessary for generating and keeping Coordinated Universal Time (UTC) and distributing standard time clocks. Global Navigation Satellite System (GNSS) Common View, GNSS All-in-View, Two-Way Satellite Time and Frequency Transfer (TWSTFT), Very Long Baseline Interferometry (VLBI), optical fiber, and Network Time Protocol (NTP) based methods have been used for time comparison. In these methods, GNSS based time comparison techniques are widely used for time synchronization in critical national infrastructures and in common areas of application such as finance, military, and wireless communication. However, GNSS-based time comparison techniques are vulnerable to jamming or interference environments and it is difficult to respond to GNSS signal disconnection according to the international situation. In response, in this paper, Code-Division Multiple Access (CDMA) based All-to-All TWSTFT operation method is proposed. A software-based simulation platform also was designed for performance analysis in multi-TWSTFT signal environments. Furthermore, code and carrier measurement jitters were calculated in multi-signal environments using the designed simulation platform. By using the technique proposed in this paper, it is anticipated that the TWSTFT-based time comparison method will be used in various fields and satisfy high-performance requirements such as those of a GNSS master station and power plant network reference station.

System-level Hardware Function Verification System (시스템수준의 하드웨어 기능 검증 시스템)

  • You, Myoung-Keun;Oh, Young-Jin;Song, Gi-Yong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.2
    • /
    • pp.177-182
    • /
    • 2010
  • The flow of a universal system-level design methodology consists of system specification, system-level hardware/software partitioning, co-design, co-verification using virtual or physical prototype, and system integration. In the developing process of a hardware component in system, the design phase has been regarded as a phase consuming lots of time and cost. However, the verification phase in which functionality of the designed component is verified has recently been considered as a much important phase. In this paper, the implementation of a verification environment which is based on SystemC infrastructure and verifies the functionality of a hardware component is described. The proposed verification system uses SystemC user-defined channel as communication interface between variables of SystemC module and registers of Verilog module. The functional verification of an UART is performed on the proposed verification system. SystemC provides class library for hardware modeling and has an advantage of being able to design a system consisting hardware and software in higher abstraction level than register transfer level. Source codes of SystemC modules are reusable with a minor adaptation on verifying functionality of another hardware component.

Development of ArcGIS-based Model to Estimate Monthly Potential Soil Loss (월단위 토양유실가능성 추정을 위한 ArcGIS 기반의 모형 개발)

  • Yu, Na Young;Lee, Dong June;Han, Jeong Ho;Lim, Kyoung Jae;Kim, Jonggun;Kim, Ki Hyoung;Kim, Soyeon;Kim, Eun Seok;Park, Youn Shik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.1
    • /
    • pp.21-30
    • /
    • 2017
  • Soil erosion has been issued in many countries since it causes negative impacts on ecosystem at the receiving water bodies. Therefore best management practices to resolve the problem in a watershed have been developed and implemented. As a prior process, there is a need to define soil erosion level and to identify the area of concern regarding soil erosion so that the practices are effective as they are designed. Universal Soil Loss Equation (USLE) were developed to estimate potential soil erosion and many Geographic Information System (GIS) models employ USLE to estimate soil erosion. Sediment Assessment Tool for Effective Erosion Control (SATEEC) is one of the models, the model provided several opportunities to consider various watershed peculiarities such as breaking of slope length, monthly variation of rainfall, crop growth at agricultural fields, etc. SATEEC is useful to estimate soil erosion, however the model can be implemented with ArcView software that is no longer used or hard to use currently. Therefore SATEEC based on ArcView was rebuild for the ArcGIS software with all modules provided at the previous version. The rebuilt SATEEC, ArcSATEEC, was programmed in ArcPy and works as ArcGIS Toolset and allows considering monthly variations of rainfall and crop growth at any watershed in South-Korea. ArcSATEEC was applied in Daecheong-dam watershed in this study, monthly soil erosion was estimated with monthly rainfall and crop growth variation. Annual soil erosion was computed by summing monthly soil erosion and was compared to the conventional approach to estimate annual soil erosion. The annual soil erosion estimated by the conventional approach and by summing monthly approach did not display much differences, however, ArcSATEEC was capable to provide monthly variation of soil erosion.

A Study on the Development items of Korean Marine GIS Software Based on S-100 Universal Hydrographic Standard (S-100 표준 기반 해양 GIS 소프트웨어 국산화 개발 방향에 관한 연구)

  • LEE, Sang-Min;CHOI, Tae-Seok;KIM, Jae-Myung;CHOI, Yun-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.3
    • /
    • pp.17-28
    • /
    • 2022
  • This study is to develop the direction of the development of the next-generation mapping of marine information required to develop a base of the utilization localization of maritime production tools. The GIS data-processing products and technologies currently used in the Korea's marine sector depend on external applications which is renewal costs, technical updates, and unreflected characteristics. Meanwhile, the S-100 standard, the next generation hydrographic data model that complements S-57's problems in marine GIS data processing, was adopted as a new marine data standard. This study aims to present the current status and problems of marine GIS technology in Korea and to suggest the development direction of GIS software based on the next generation hydrogrphic data model S-100 standard of IHO(International Hydrographic Organization). S-100-based marine GIS localization technology development and industrial ecosystem development research is expected to scientific decision-making on policy issues that occur with other countries such as marine territory management and development and use of marine resources.

NFT(Non-Fungible Token) Patent Trend Analysis using Topic Modeling

  • Sin-Nyum Choi;Woong Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.41-48
    • /
    • 2023
  • In this paper, we propose an analysis of recent trends in the NFT (Non-Fungible Token) industry using topic modeling techniques, focusing on their universal application across various industrial fields. For this study, patent data was utilized to understand industry trends. We collected data on 371 domestic and 454 international NFT-related patents registered in the patent information search service KIPRIS from 2017, when the first NFT standard was introduced, to October 2023. In the preprocessing stage, stopwords and lemmas were removed, and only noun words were extracted. For the analysis, the top 50 words by frequency were listed, and their corresponding TF-IDF values were examined to derive key keywords of the industry trends. Next, Using the LDA algorithm, we identified four major latent topics within the patent data, both domestically and internationally. We analyzed these topics and presented our findings on NFT industry trends, underpinned by real-world industry cases. While previous review presented trends from an academic perspective using paper data, this study is significant as it provides practical trend information based on data rooted in field practice. It is expected to be a useful reference for professionals in the NFT industry for understanding market conditions and generating new items.

Comparison of the Strain on the Alveolar Ridge According to the Occlusal Scheme of Complete Dentures (총의치 교합양식에 따른 응력 분포 양상 비교연구)

  • Choi, Won-Jun;Lim, Young-Jun;Kim, Chang-Whe;Kim, Myung-Joo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.1
    • /
    • pp.1-12
    • /
    • 2010
  • The purpose of this study was to compare the strain on the alveolar ridge in the centric, eccentric and protrusive position according to the occlusal scheme (bilateral balanced occlusion with 33 degree anatomical teeth, group B; monoplane occlusion with non-anatomical teeth, group M; lingualized occlusion with 33 degree anatomical teeth and non-anatomical teeth, group L; of complete dentures. Experimental dentures were set bilateral balanced occlusion, lingualized occlusion and monoplane occlusion. They are analysed through T-Scan II(Tekscan, Boston, U.S.A) and 1.5mm thick layer was removed from the denture-supporting surface of resin model and then replaced with silicone to simulate resilient edentulous ridge mucosa. A $4{\times}6$ linear strain gauge is attached to the $1^{st}$ premolar and $1^{st}$ molar area. The strain values are recorded according to the occlusal scheme in the centric, eccentric and protrusive position after uniformly applying 50 N and 150 N force through a Universal Testing Machine(instron$^{(R)}$ 5567, Bluehill 2.0 software ,U.S.A.) with the models mounted in the articulator. When performing centric and protrusive occlusion, the three groups of occlusal scheme were compared in the anterior region and in the posterior region. The strains of each group were also compared in the working side and in the non-working side during eccentric excursion. It was observed that the strain in the bilateral balanced occlusion showed a higher value than the lingualized occlusion and monoplane occlusion in every position except the non-working side. However, during the eccentric movement the strain value in the non-working side showed the lowest value in the bilaterally balanced occlusion. The strain change amount from the working side or centric occlusion to non-working side and also the strain variation rate within the non-working side showed the highest value in bilateral balanced occlusion.