• Title/Summary/Keyword: Unit Pollution Loads

Search Result 71, Processing Time 0.022 seconds

Determination of Heavy Metal Unit Load from Transportation Landuses during a Storm (교통 관련 토지이용에서의 중금속 오염원단위 산정)

  • Kim, Cheol-Min;Lee, So-Young;Lee, Eun-Ju;Kim, Lee-Hyung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.155-160
    • /
    • 2008
  • The urban areas have various landuses such as residential, commercial, industrial and official purposes that are highly concerned with human activities. The other landuses are relating to vehicle activities, which are roads, parking lots, bridges, parks etc. The mainly using landuses by human activities are possessing three different areas that are buildings, parking lots/roads and landscapes. Of these areas, the buildings and landscapes can be classified as non-pollution areas. However, the parking lots or roads are classifying as the main pollution areas because of vehicle activities. Therefore, the landuses arising the nonpoint pollution during a storm in urban areas are roads and parking lots. The vehicles are emitting lots of nonpoint pollutants such as metals and particulate matters and it is impacting on water qualities and aqua-ecosystems nearby the city areas. Therefore, this research was conducted for characterizing the pollutant types and determining the EMCs (Event Mean Concentrations) and unit pollutant loads during a storm. The monitoring was performed on 9 locations such as highways, service area, tollgates, parking lot and bridges. All of the landuses selected for monitoring are concerned with transportation. The results can be effectively used to predict the pollutant loading before urban planning and to select the BMPs (Best Management Practices) for reducing the pollution.

Wastewater Flowrate Analysis of Drainage Basin for Application of Total Water Pollution Load Management System (수질오염총량관리제도 적용을 위한 도시유역의 하수발생량 분석)

  • Kwon, Jun-Hee;Park, In-Hyeok;Ha, Sung-Ryoung
    • Journal of Wetlands Research
    • /
    • v.11 no.1
    • /
    • pp.75-82
    • /
    • 2009
  • The regulation of emission concentration for stream water qualities doesn't control quantitative increase on pollution loads, it has limits for improvement of water qualities. Total water pollution load management system(TMDL) can control the total amount of pollutant in waste water which is allowed to assign and control the total discharged pollutant loads in a permissible level. When it comes to generated wastewater value of TMDL system, there is difference between calculated value based on individual pollutant unit load and observed value. Calculated sewer inflow, calculated sewer outflow, measured sewer inflow, and measured sewer outflow at dry season are $26,460.9m^3$/d, $17,778.6m^3$/d, $17,106.1m^3$/d and $19,033.9m^3$/d respectively, Calculated sewer inflow, calculated sewer outflow, measured sewer inflow, and measured sewer outflow at rainy season are $49,512.2m^3$/d, $18,628.7m^3$/d, $30,918.2m^3$/d, $19,700.7m^3$/d respectively. This result presents the necessity to acquire the precise observed data to fulfill the efficient TMDL system.

  • PDF

Correlation between Soil Nutrient Contents and Water Pollutant Loads in Hydrologic Unit Watersheds: Implication on the Total Maximum Daily Loads (TMDLs) (수질오염총량관리 단위유역내 토양 양분 및 수질오염 부하량 상관관계 비교)

  • Cho, Kyung-Sik;Lee, Ho-sik
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.509-515
    • /
    • 2011
  • For this study the 4 sub-watersheds Okdong A, Hankang B, Jecheon A and Hankang C which are the main streams of the Han River within the mid-level region of Chungju Dam are selected and the analysis of soils has been carried out through the soil basic survey. When it comes to the soil erosion amount the soil nutrient load has been calculated by utilizing the RUSLE erosion equation. In case of the data related to the measurement of water flow and quality the information available from the "Water Information System" one of the websites run by the Ministry of Environment has been used to calculate the water pollution load. The correlation between the soil nutrient load and the water pollutant load has been analyzed through making comparison. According to the results related to the soil nutrient load of each sub-watershed the Hankang C shows the highest values TOC 29,986.92 ton/yr, TN 3,860.33 ton/yr and TP 973.97 ton/yr respectively. Even when it comes to the loads related to water quality the Hankang C shows also comparatively high values TOC 6,625.64 ton/yr, TN 7,335.01 ton/yrand TP 145.49 ton/yr respectively. The soil nutrient loads of the sub-watersheds are shown to increase towards the lower stream meaning the load increases in the order of Hankang CHankang B and Okdong A. When it comes to the water pollutant load the value goes up along down the water system meaning the load gets higher in the order of Hankang C, Hankang B and Okdong A while utilizing the mainstream within the mid-level region of Chungju Dam as the basis. The correlation study showed that the nutrient content of soil is proportional to the pollutant load in water with the strongest positive correlation with TOC.

Estimation of Pollutant Load Delivery Ratio for Flow Duration Using L-Q Equation from the Oenam-cheon watershed in Juam Lake (유량-부하량관계식을 이용한 주암호 외남천 유역의 유황별 유달율 산정)

  • Choi, Dong-Ho;Jung, Jae-Woon;Lee, Kyoung-Sook;Choi, Yu-Jin;Yoon, Kwang-Sik;Cho, So-Hyun;Park, Ha-Na;Lim, Byung-Jin;Chang, Nam-Ik
    • Journal of Environmental Science International
    • /
    • v.21 no.1
    • /
    • pp.31-39
    • /
    • 2012
  • The objective of this study is to provide pollutant loads delivery ratio for flow duration in Oenam-cheon watershed, which is upstream watershed of Juam Lake. To calculate the delivery ratio by flow duration, rating curves and discharge-loads curves using measured data were established, then Flow Duration Curve(FDC) and pollutant loads delivery ratio curves were constructed. The results show that the delivery ratios for $BOD_5$ for abundant flow($Q_{95}$), ordinary flow($Q_{185}$), low flow($Q_{275}$), and drought flow($Q_{355}$) were 23.9, 12.7, 7.1, and 2.9%, respectively. The delivery ratios of same flow regime for T-N were 58.4, 31.2, 17.2 and 7.1%, respectively. While, the delivery ratios T-P were 17.3, 7.5, 3.4, and 1.1% respectively. In general, delivery ratio of high flow condition showed higher value due to the influence of nonpoint source pollution. Based on the study results, generalized equations were developed for delivery ratio and discharge per unit area, which could be used for ungaged watershed with similar pollution sources.

Analysis of Water Quality Trends Using the LOADEST Model: Focusing on the Youngsan River Basin (LOADEST 모형을 활용한 수질 경향성 분석: 영산강 수계를 중심으로)

  • Gi-Soon, Lee;Jonghun, Baek;Ji Yeon, Choi;Youngjea, Lee;Dong Seok, Shin;Don-Woo, Ha
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.6
    • /
    • pp.306-315
    • /
    • 2022
  • In this study, long-term measurement data were applied to the LOADEST model and used as an analysis tool to identify and interpret trends in pollution load. The LOADEST model is a regression equation-based pollution load estimation program developed by the United States Geological Survey (USGS) to estimate the change in the pollution load of rivers according to flow rate and time and provides 11 regression equations for pollution load evaluation. As a result of simulating the Gwangjuchen2, Pungyeongjeongchen, and Pyeongdongchen in the Yeongbon B unit basin in the middle and upper reaches of the Yeongsan River with the LOADEST model using water quality and flow measurement data, lower values were observed for the Gwangjuchen2 and Pyeongdongchen, whereas the Pungyeongjeongchen had higher values. This was judged to be due to the characteristics of the LOADEST model related to data continuity. According to the parameters estimated by the LOADEST model, pollutant trends were affected by increases in the flow. In addition, variability increased with time, and BOD and T-P were affected by the season. Thus, the LOADEST model can contribute to water quality management as an analytical tool for long-term data monitoring.

Characteristics of wastewater from unit systems of automative process for manufacture of paper mulberry pulp fibers (닥 펄프 제조공정 자동화에 따른 단위공정 폐수의 특성)

  • Hwang, Ji-Hyun;Hwang, Sung-Jun;Kim, Hyoung-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.3
    • /
    • pp.55-62
    • /
    • 2015
  • Paper mulberry fibers have been used as fibrous raw materials for manufacturing traditional handmade paper, hanji for a long time. Compared to wood pulp fibers, pulp fibers from mulberry bast tissue have some benefits in physical and chemical properties due to their high D.P (degree of polymerization), M.W (molecule weight) and long fiber length. Specially, Korean handmade hanji shows outstanding characteristics in mechanical tensile strength, folding endurance, flexibility and long sustainable conservation properties. Therefore, hanji is widely applied to daily supplies, hygienic goods, medical supplies, clothing industries and so on. Recently, the potential demand of mulberry pulp fibers is more and more increased on the strength of high application fields. This study was focused on the possibility of wastewater recycling in unit operation systems for the development of automated mass production line. The properties and environmental loads of wastewater from debarking, cooking, bleaching and screening process were analyzed by means of COD, conductivity, turbidity and solid materials. The wastewater from debarking and cooking process was comparatively high in pollution load, and would be treated by additional approaches of chemico-physical method.

Improvement and Application of Total Maximum Daily Load Management System of Korea: 1. Calculation of Total Amount of Pollutant Load in the Anyangcheon Watershed (우리나라 오염총량관리제도의 개선 및 적용: 1. 안양천 유역의 오염부하량 산정)

  • Kim, Kyung-Tae;Chung, Eun-Sung;Kim, Sang-Ug;Lee, Kil Seong;Seong, Jin-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.972-978
    • /
    • 2009
  • This study modifies the present total maximum daily load (TMDL) system of Ministry of Environment and applies to the Anyangcheon watershed. Hydrologic Simulation Program-FORTRAN (HSPF) model is used to simulate both runoff and non-point source pollution, simultaneously, instead of QUAL2E. The drought flow (355th daily flow) is proposed for the target water quantity since it is easier to satisfy low flow (275th daily flow) for the target water quality than drought flow. The increase of discharge is more than the increase of pollutant load except for the period under low flow. The measured unit loads for non-point source are used to consider the regional runoff characteristics. The measured water quantity and quality data are used since the ministry of environment supports only water quality. This analysis results show some reasons for the improvement of the present TMDL system of Korea.

A Study of Nonpoint Source Pollutants Loads in Each Watershed of Nakdong River Basin with HSPF (HSPF 모델을 이용한 낙동강유역의 유역단위별 비점오염부하량 산정)

  • Kwon, Kwangwoo;Choi, Kyoung-sik
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.1
    • /
    • pp.68-77
    • /
    • 2017
  • In order to estimate the non-point pollution loads from each watersheds among 209 watersheds, the calibration and validation of HSPF model were carried out based on 2012 in 2013 years. In the case of flow rate, R2 of calibration and validation were 0.71~0.93 and 0.71~0.79, which were relatively good values. With the respect to calibration of water quality, % differences between measured and simulated values were 0.4 ~ 9.7 of DO, BOD 0.5 ~ 30.2% and TN 1.9~28.6% except for Hwhangkang B site. In case of validation, DO was 0.2 ~ 13.7%, BOD 1.3~23% and TN 0.5~24.3% excluding Hwhangkang B. However, since the concentration of TP was very small compared with other items, the range of difference was large as 0.8~55.3%. level. As the result of calculating annual accumulative BOD loads for each watershed, it was found that RCH 123 (Uryeong, Gyeongsangnamdo), RCH 121 (Jinju, Gyeongsangnamdo) and RCH 92 (Daegu) were the high ranked. The unit watersheds including various landuse type susch as forest and agricultural sites in mainstream areas have a higher BOD nonpoint pollution load than those in dam regions. However, the results of the annual cumulative loading of the basins for nutrients did not appear to be consistent with the BOD annual cumulative loading ranks. Other factors that represent watershed characteristics such as landslope and soiltypes, including landuse pattern, have been found to be closely related to nonpoint pollutant loads.

LIDMOD3 Development for Design and Evaluation of Low Impact Development (저영향개발기법 설계 및 평가를 위한 LIDMOD3 개발)

  • Jeon, Ji-Hong;Seo, Seong-Cheol
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.4
    • /
    • pp.382-390
    • /
    • 2018
  • In this study, the LIDMOD3 was developed to design and evaluate low impact development (LIDMOD). In the same fashion, the LIDMOD3 employs a curve number (NRCS-CN) method to estimate the surface runoff, infiltration and event mean concentration as applicable to pollutant loads which are based on a daily time step. In these terms, the LIDMOD3 can consider a hydrologic soil group for each land use type LID-BMP, and the applied removal efficiency of the surface runoff and pollutant loads by virtue of the stored capacity, which was calculated by analyzing the recorded water balance. As a result of Model development, the LIDMOD3 is based on an Excel spread sheet and consists of 8 sheets of information data, including: General information, Annual precipitation, Land use, Drainage area, LID-BMPs, Cals-cap, Parameters, and the Results. In addition, the LIDMOD3 can estimate the annual hydrology and annual pollutant loads including surface runoff and infiltration, the LID efficiency of the estimated surface runoff for a design rainfall event, and an analysis of the peak flow and time to peak using a unit hydrolograph for pre-development, post-development without LID, and as calculated with LID. As a result of the model application as applied to an apartment, the LIDMOD3 can estimate LID-BMPs considering a well spatical distributed hydroloic soil group as realized on land use and with the LID-BMPs. Essentially, the LIDMOD3 is a screen level and simple model which is easy to use because it is an Excel based model, as are most parameters in the database. This system can be expected to be widely used at the LID site to collect data within various programmable model parameters for the processing of a detail LID model simulation.

Characteristics of Biochemical Oxygen Demand Export from Paddy Fields during Storm and Non-storm Period and Evaluation of Unit Load (강우시와 비강우시 BOD 유출 특성 조사 및 원단위 평가)

  • Choi, Dongho;Cho, Sohyun;Hwang, Taehee;Kim, Youngsuk;Jung, Jaewoon;Choi, Woojung;Park, Hyunkyu;Yoon, Kwangsik
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.5
    • /
    • pp.531-537
    • /
    • 2017
  • The biologic Oxygen Demand (BOD) is a reliable and generally accepted indicator of water pollution by organic pollutants. Accordingly, estimation of BOD export from paddies carries important implications fwith regard to water management in rural areas. In this study, hydrology and BOD concentration were monitored during the period 2008 through 2012, in an effort to understand the characteristics of BOD export from paddy fields. The findings demonstrated that BOD load by rainfall above 50 mm. occupied about 50 % of total load, whereas the load by less than ten mm. rainfall occupied about 29 % of the total load during periods of stormy activity. It therefore seems that it could be possible to reduce the BOD load up to 29 % during storm periods, when drainage control conducted for rainfall less than ten mm.(an amount which is relatively easy to manage). The documented mean loads of storm and non-storm were $17.1kg\;ha^{-1}\;yr^{-1}$ and $11.2kg\;ha^{-1}\;yr^{-1}$, respectively. The BOD load during the significant rainfall period was similar to the renewed unit load by NIER (2014). However, there were substantial differences between unit load and actual load when the non-storm load was incorporated into the BOD load estimation from paddy fields. In view of the foregoing, it is felt that, the non-storm load needs to be further considered and managed for the successful implementation of Total Maximum Daily Load (TMDL) program.