• Title/Summary/Keyword: Unilateral contact problem

Search Result 7, Processing Time 0.025 seconds

Analysis of slender structural elements under unilateral contact constraints

  • Silveira, Ricardo Azoubel Da Mota;Goncalves, Paulo Batista
    • Structural Engineering and Mechanics
    • /
    • v.12 no.1
    • /
    • pp.35-50
    • /
    • 2001
  • A numerical methodology is presented in this paper for the geometrically non-linear analysis of slender uni-dimensional structural elements under unilateral contact constraints. The finite element method together with an updated Lagrangian formulation is used to study the structural system. The unilateral constraints are imposed by tensionless supports or foundations. At each load step, in order to obtain the contact regions, the equilibrium equations are linearized and the contact problem is treated directly as a minimisation problem with inequality constraints, resulting in a linear complementarity problem (LCP). After the resulting LCP is solved by Lemke's pivoting algorithm, the contact regions are identified and the Newton-Raphson method is used together with path following methods to obtain the new contact forces and equilibrium configurations. The proposed methodology is illustrated by two examples and the results are compared with numerical and experimental results found in literature.

On the use of the Lagrange Multiplier Technique for the unilateral local buckling of point-restrained plates, with application to side-plated concrete beams in structural retrofit

  • Hedayati, P.;Azhari, M.;Shahidi, A.R.;Bradford, M.A.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.6
    • /
    • pp.673-685
    • /
    • 2007
  • Reinforced concrete beams can be strengthened in a structural retrofit process by attaching steel plates to their sides by bolting. Whilst bolting produces a confident degree of shear connection under conditions of either static or seismic overload, the plates are susceptible to local buckling. The aim of this paper is to investigate the local buckling of unilaterally-restrained plates with point supports in a generic fashion, but with particular emphasis on the provision of the restraints by bolts, and on the geometric configuration of these bolts on the buckling loads. A numerical procedure, which is based on the Rayleigh-Ritz method in conjunction with the technique of Lagrange multipliers, is developed to study the unilateral local buckling of rectangular plates bolted to the concrete with various arrangements of the pattern of bolting. A sufficient number of separable polynomials are used to define the flexural buckling displacements, while the restraint condition is modelled as a tensionless foundation using a penalty function approach to this form of mathematical contact problem. The additional constraint provided by the bolts is also modelled using Lagrange multipliers, providing an efficacious method of numerical analysis. Local buckling coefficients are determined for a range of bolting configurations, and these are compared with those developed elsewhere with simplifying assumptions. The interaction of the actions in bolted plates during buckling is also considered.

Effects of Thermal Contact Resistance on Transient Thermoelastic Contacts for an Elastic Foundation (시간에 따른 탄성지지 열탄성 접촉에 대한 열접촉저항의 영향)

  • Jang, Yong-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.330-333
    • /
    • 2005
  • The paper presents a numerical solution to the problem of a hot rigid indenter siding over a thermoelastic Winkler foundation with a thermal contact resistance at constant speed. It is shown analytically that no steady-state solution can exist for sufficiently high temperature or sufficiently small normal load or speed regardless of the thermal contact resistance. However, the steady state solution may exist in the same situation if the thermal contact resistance is considered. This means that the effect of the large values of temperature difference and small value of force or velocity which occur at no steady state can be lessened due to the thermal contact resistance. When there is no steady-state the predicted transient behavior involves regions of transient stationary contact interspersed with regions of separation regardless of the thermal contact resistance. Initially, the system typically exhibits a small number of relatively large contact and separation regions, but after the initial transient the trailing edge of the contact area is only established and the leading edge loses contact, reducing the total extent of contact considerably. As time progresses, larger and larger number of small contact areas are established, until eventually the accuracy of the algorithm is limited by the discretization used.

  • PDF

MIXED FINITE VOLUME METHOD ON NON-STAGGERED GRIDS FOR THE SIGNORINI PROBLEM

  • Kim, Kwang-Yeon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.12 no.4
    • /
    • pp.249-260
    • /
    • 2008
  • In this work we propose a mixed finite volume method for the Signorini problem which are based on the idea of Keller's finite volume box method. The triangulation may consist of both triangles and quadrilaterals. We choose the first-order nonconforming space for the scalar approximation and the lowest-order Raviart-Thomas vector space for the vector approximation. It will be shown that our mixed finite volume method is equivalent to the standard nonconforming finite element method for the scalar variable with a slightly modified right-hand side, which are crucially used in a priori error analysis.

  • PDF

Occlusal Analysis of the Subjects with Chewing Side Preference Using the T-Scan II System (T-Scan II 시스템을 이용한 습관적 편측저작자들의 교합 분석)

  • Park, Eun-Hee;Kim, Mee-Eun;Kim, Ki-Suk
    • Journal of Oral Medicine and Pain
    • /
    • v.31 no.3
    • /
    • pp.245-254
    • /
    • 2006
  • While orofacial pain or various dental factors are generally considered as the primary cause of unilateral chewing tendency, there exist several studies indicating that dental factors did not affect the preferred chewing side. The aim of this study was to examine difference of occlusal scheme between the subjects with and without chewing side preference. The difference between the chewing and non-chewing sides in the unilateral chewing group was investigated as well. Computerized, T-Scan II system was used for occlusal analysis. 20 subjects for the unilateral chewing group (mean age of $25.25{\pm}2.84$ years) and 20 subjects for the bilateral chewing group (mean age of $27.00{\pm}5.07$ years) were selected by a questionnaire on presence or absence of chewing side preference and those with occlusal problem or pain and/or dysfunction of jaw were excluded. T-Scan recordings were obtained during maximum intercuspation and excursion movement. The number of contact points, relative occlusal force ratio between right and left sides, tooth sliding area and elapsed time throughout the maximum intercuspation were calculated. Elapsed time for excursion was also investigated. The results of this study shows that the unilateral chewing group had the smaller average tooth contact areas compared with those of the bilateral group (p<0.005). In the unilateral chewing group, the contact areas of non-chewing side are smaller than those of chewing side (p<0.005). The contact areas on their preferred sides were not significantly different with those of right or left side of the subjects without chewing side preference. There was no significant difference in the elapsed time during maximum intercuspation and lateral excursion, the sliding areas and relative of right-to-left occlusal force ratio between the two groups. From the results of this study, it is likely that individuals prefer chewing on the side with more contact areas for efficient chewing.

Orienting the superficial inferior epigastric artery (SIEA) pedicle in a stacked SIEA-deep inferior epigastric perforator free flap configuration for unilateral tertiary breast reconstruction

  • Yu, Ya-han;Ghorra, Dina;Bojanic, Christine;Aria, Oti N.;MacLennan, Louise;Malata, Charles M.
    • Archives of Plastic Surgery
    • /
    • v.47 no.5
    • /
    • pp.473-477
    • /
    • 2020
  • Superficial inferior epigastric artery (SIEA) flaps represent a useful option in autologous breast reconstruction. However, the short-fixed pedicle can limit flap inset options. We present a challenging flap inset successfully addressed by de-epithelialization, turnover, and counterintuitive rotation. A 47-year-old woman underwent left tertiary breast reconstruction with stacked free flaps using right deep inferior epigastric perforator and left SIEA vessels. Antegrade and retrograde anastomoses to the internal mammary (IM) vessels were preferred; additionally, the thoracodorsal vessels were unavailable due to previous latissimus dorsi breast reconstruction. Optimal shaping required repositioning of the lateral ends of the flaps superiorly, which would position the ipsilateral SIEA hemi-flap pedicle lateral to and out of reach of the IM vessels. This problem was overcome by turning the SIEA flap on its long axis, allowing the pedicle to sit medially with the lateral end of the flap positioned superiorly. The de-epithelialized SIEA flap dermis was in direct contact with the chest wall, enabling its fixation. This method of flap inset provides a valuable solution for medializing the SIEA pedicle while maintaining an aesthetically satisfactory orientation. This technique could be used in ipsilateral SIEA flap breast reconstructions that do not require a skin paddle, as with stacked flaps or following nipple-sparing mastectomy.

AN EXPERIMENTAL STUDY ON THE OSSEOINTEGRATION OF THE TI-6AL-4V BEAD COATING IMPLANTS (Ti-6Al-4V 비드코팅 임프란트 시제품의 골유착에 대한 실험적 연구)

  • Woo, Jin-Oh;Park, Bong-Wook;Byun, June-Ho;Kim, Seung-Eon;Kim, Gyoo-Cheon;Park, Bong-Soo;Kim, Jong-Ryoul
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.1
    • /
    • pp.52-59
    • /
    • 2008
  • The geometric design of an implant surface may play an important role in affecting early osseointegration. It is well known that the porous surfaced implant had much benefits for the osseointegration and the early stability of implant. However, the porous surfaced implant had weakness from the transgingival contamitants, and it resulted in alveolar bone loss. The other problem identified with porous surface implant is the loss of physical properties resulting from the bead sintering process. In this study, we developed the new bead coating implant to overcome the disadvantages of porous surfaced implant. Ti-6Al-4V beads were supplied from STARMET (USA). The beads were prepared by a plasma rotating electrode process (PREP) and had a nearly spherical shape with a diameter of 75-150 ${\mu}m$. Two types of titanium implants were supplied by KJ Meditech (Korea). One is an external hexa system (External type) and the other is an internal system with threads (Internal type). The implants were pasted with beads using polyvinylalcohol solution as a binder, and then sintered at 1250 $^{\circ}C$ for 2 hours in vacuum of $10^{-5}$ torr. The resulting porous structure was 400-500 ${\mu}m$ thick and consisted of three to four bead layers bonded to each other and the implant. The pore size was in the range of 50-150 ${\mu}m$ and the porosity was 30-40 % in volume. The aim of this study was to evaluate the osseointegration of the newly developed dental implant. The experimental implants (n=16) were inserted in the unilateral femur of 4 mongrel dogs. All animals were killed at 8 weeks after implantation, and samples were harvested for hitological examination. All bead coated porous implants were successfully osseointegrated with peripheral bone. The average bone-implant contact ratios were 84.6 % (External type) and 81.5 % (Internal type). In the modified Goldner's trichrome staining, new generated mature bones were observed at the implant interface at 8 weeks after implantation. Although, further studies are required, we could conclude that the newly developed vacuum sintered Ti-6Al-4V bead coating implant was strong enough to resist the implant insertion force, and it was easily osseointegrated with peripheral bone.