• 제목/요약/키워드: Uniformity of temperature

검색결과 668건 처리시간 0.024초

차세대 고온초전도 선재를 이용한 영구전류시스템의 히터트리거 특성 해석 (A Characteristic Analysis of Heater Triggered Persistent Current System with 2G High Tc Superconducting Tape)

  • 박동근;강형구;양성은;안민철;윤용수;윤경용;이상진;고태국
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.1228-1230
    • /
    • 2005
  • This paper deals with design of heater trigger switching in a persistent current system(PCS) by finite element method(FEM) analysis of YBCO coated conductor(CC) tape. Most promising superconducting wire is YBCO coated conductor tape in these days for its high n value and critical current independency from external magnetic field. It is expected to be used many superconducting application such as fault current limiter and cable etc. The superconducting magnet which is operated in persistent current mode in SMES, NMR, MRI and MAGLEV has many advantages such as a high uniformity of a magnetic field and reducing a thermal loss. A PCS system consists of magnet power supply (MPS) which energized current to a magnet, heater, a coated conductor tape for switching, and superconducting magnet. In this paper, the characteristic of thermal quench of the YBCO CC tape and BSCCO tape by heater trigger analyzed by FEM. And optimal length of heater is calculated by temperature and time analysis. This heater trigger analysis is expected to be a basic concept of PCS application design.

  • PDF

활성탄소섬유의 비표면적에 따른 유해가스 흡착 및 전기화학적 감응 특성 (Effect of Specific Surface Area of Activated Carbon Fiber on Harmful Gas Adsorption and Electrochemical Responses)

  • 강진균;정용식;배병철;류지현
    • 접착 및 계면
    • /
    • 제21권2호
    • /
    • pp.51-57
    • /
    • 2020
  • 최근 산업활동을 통해 배출되는 유해 오염물질 제거에 대한 관심이 증가하고 있다. 본 연구에서는 수증기 활성화 법을 이용하여 활성탄소섬유를 제조하고, 이의 유해가스 흡착 및 전기화학적 감응 특성을 분석하였다. 활성탄소섬유의 균일한 기공 구조, 활성 반응 면적 및 반응 위치를 조절하기 위하여, 활성화 온도(750-850 ℃) 및 활성화 시간(30-240 min)을 조절하였고, 다양한 활성화 조건을 통해 제조된 활성탄소섬유의 SO2와 NO 가스 흡착 및 가스 센서를 통한 감응 특성을 분석하였다. 특히, 850 ℃에서 45 min동안 수증기 활성화 반응을 통해 제조된 활성탄소섬유가 가장 높은 비표면적(1,041.9 ㎡/g)과 기공 특성(0.42 ㎤/g)을 보였으며, 우수한 SO2 (1.061 mg/g) 및 NO (1.210 mg/g) 가스 흡착 특성을 보였다.

Polyimide Multilayer Thin Films Prepared via Spin Coating from Poly(amic acid) and Poly(amic acid) Ammonium Salt

  • Ha, You-Ri;Choi, Myeon-Cheon;Jo, Nam-Ju;Kim, Il;Ha, Chang-Sik;Han, Dong-Hee;Han, Se-Won;Han, Mi-Jeong
    • Macromolecular Research
    • /
    • 제16권8호
    • /
    • pp.725-733
    • /
    • 2008
  • Polyimide (PI) multilayer thin films were prepared by spin-coating from a poly(amic acid) (PAA) and poly(amic acid) ammonium salt (PAAS). PI was prepared from pyromellitic dianhydride (PMDA) and 4,4'-oxydianiline (ODA) PAA. Different compositions of PAAS were prepared by incorporating triethylamine (TEA) into PMDA-ODA PAA in dimethylacetamide. PI multilayer thin films were spin-coated from PMDA-ODA PAA and PAAS. The PAAS comprising cationic and anionic moieties were spherical with a particle size of $20{\sim}40\;nm$. Some particles showed layers with ammonium salts, despite poor ordering. Too much salt obstructed the interaction between the polymer chains and caused phase separation. A small amount of salt did not affect the interactions of the interlayer structure but did interrupt the stacking between chains. Thermogravimetric analysis (TGA) showed that the average decomposition temperature of the thin films was $611^{\circ}C$. All the films showed almost single-step, thermal decomposition behavior. The nanostructure of the multilayer thin films was confirmed by X -ray reflectivity (XRR). The LF 43 film, which was prepared with a 4:3 molar ratio of PMDA and ODA, was comprised of uniformly spherical PAAS particles that influenced the nanostructure of the interlayer by increasing the interaction forces. This result was supported by the atomic force microscopy (AFM) data. It was concluded that the relationship between the uniformity of the PAAS particle shapes and the interaction between the layers affected the optical and thermal properties of PI layered films.

Solution Mixing법에 의한 PS/MWCNT 복합재료의 열 및 전기전도 특성: MWCNT 표면 개질의 영향 (Thermal and Electrical Properties of PS/MWCNT Composite Prepared by Solution Mixing: Effect of Surface Modification of MWCNT)

  • 박은주;이정우;정동수;심상은
    • Elastomers and Composites
    • /
    • 제45권1호
    • /
    • pp.17-24
    • /
    • 2010
  • 본 논문에서는 MWCNT/PS 복합재료 제조 시, MWCNT의 표면 개질에 의한 분산도에 따른 열 및 전기전도도에 관하여 연구하였다. 다양한 종류의 MWCNT를 PS/THF 용액에서 분산시킨 후 침전을 통하여 복합재료를 제조하였다. 사용된 MWCNT는 pristine MWCNT의 상이동 촉매 존재 하에서 상온에서 $KMnO_4$를 이용하여 하이드록실기로 개질된 MWCNT, BYK-9077 분산제를 이용한 MWCNT를 사용하였다. 분석 결과 MWCNT의 PS/THF 용액 내에서의 분산 안정성은 최종 제조되어진 복합재료의 열 및 전기전도도 특성 향상에 중요하게 기여하였다. PS/3 wt% pristine MWCNT에 비하여, 특히 분산제 BYK-9077을 사용한 경우에는 열전도도가 9.7% 및 전기전도도가 30~50% 향상되는 결과를 얻었다.

Effects of Ohmic Area Etching on Buffer Breakdown Voltage of AlGaN/GaN HEMT

  • Wang, Chong;Wel, Xiao-Xiao;Zhao, Meng-Di;He, Yun-Long;Zheng, Xue-Feng;Mao, Wei;Ma, Xiao-Hua;Zhang, Jin-Cheng;Hao, Yue
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권3호
    • /
    • pp.125-128
    • /
    • 2017
  • This study is on how ohmic area etching affects the buffer breakdown voltage of AlGaN/GaN HEMT. The surface morphology of the ohmic metal can be improved by whole etching on the ohmic area. The buffer breakdown voltages of the samples with whole etching on the ohmic area were improved by the suppression of the metal spikes formed under the ohmic contact regions during high-temperature annealing. The samples with selective etching on the ohmic area were investigated for comparison. In addition, the buffer leakage currents were measured on the different radii of the wafer, and the uniformity of the buffer leakage currents on the wafer were investigated by PL mapping measurement.

DLC(Diamond-Like Carbon) 코팅에 의한 오목 폴리머인쇄판의 내구성 및 인쇄 품질 특성 (Characterization of Plate Wear and Printing Quality of Concave Polymer Printing Plate Prepared by Diamond-Like Carbon Deposition Conditions)

  • 유한솔;김준형;문경일;황택성;이혁원
    • 한국재료학회지
    • /
    • 제22권10호
    • /
    • pp.552-561
    • /
    • 2012
  • Diamond-like carbon (DLC) films have been widely used in many industrial applications because of their outstanding mechanical and chemical properties like hardness, wear resistance, lubricous property, chemical stability, and uniformity of deposition. Also, DLC films coated on paper, polymer, and metal substrates have been extensively used. In this work, in order to improve the printing quality and plate wear of polymer printing plates, different deposition conditions were used for depositing DLC on the polymer printing plates using the Pulsed DC PECVD method. The deposition temperature of the DLC films was under $100^{\circ}C$, in order to prevent the deformation of the polymer plates. The properties of each DLC coating on the polymer concave printing plate were analyzed by measuring properties such as the roughness, surface morphology, chemical bonding, hardness, plate wear resistance, contact angle, and printing quality of DLC films. From the results of the analysis of the properties of each of the different DLC deposition conditions, the deposition conditions of DLC + F and DLC + Si + F were found to have been successful at improving the printing quality and plate wear of polymer printing plates because the properties were improved compared to those of polymer concave printing plates.

용접구조물의 부분 제거에 따른 용접변형의 재분포에 관한 실험적 연구 (Experimental Study of the Redistribution of Welding Distortion According to the Partial Removal of Welded Structure)

  • 김용래;왕초;김재웅
    • 대한기계학회논문집A
    • /
    • 제39권7호
    • /
    • pp.707-712
    • /
    • 2015
  • 용접변형은 용접 시 구조물 내에서의 불균일한 온도분포특성으로 인하여 필연적으로 유발되는 현상이다. 또한 용접변형이 발생된 용접구조물의 일부를 제거하는 과정에서 구조물내의 용접잔류응력과 강성의 연속적인 변화에 따라 추가적인 변형이 발생하여 변형의 재분포가 이루어진다. 특히, 이러한 현상은 선박의 제조과정 중 대형블럭을 옮기기 위해 설치된 러그의 절단과정에서 살펴볼 수 있다. 용접구조물의 부분 제거 시 발생되는 변형의 재분포는 절단공구의 파손 등의 문제를 야기하기도 한다. 본 논문은 실험을 통하여 용접구조물의 부분 제거에 따른 용접변형의 재분포가 어떠한 양상으로 발생되는지 연구하기 위한 것이다. 실험을 위해 필릿용접을 실시하였고, 용접된 리브의 일부를 제거함에 따라 발생되는 종굽힘과 각변형을 측정하여 비교 및 분석하였다.

고분자 첨가에 의한 콜타르 핏치의 결정성 및 탄소섬유 물성 변화 (Modification of Coal-Tar-Pitch and Carbon Fiber Properties by Polymer Additives)

  • 김정담;윤재민;임연수;김명수
    • 한국재료학회지
    • /
    • 제26권4호
    • /
    • pp.173-181
    • /
    • 2016
  • In order to use coal tar pitch (CTP) as a raw material for carbon fibers, it should have suitable properties such as a narrow range of softening point, suitable viscosity and uniform optical properties. In this study, raw CTP was modified by heat treatment with three types of polymer additives (PS, PET, and PVC) to make a spinnable pitch for carbon fibers. The yield, softening point, C/H ratio, insoluble yield, and meso-phase content of various modified CTPs with polymer additives were analyzed by changing the type of polymer additive and the heat treatment temperature. The purpose of this study was to compare the properties of CTPs modified by polymer addition with those of a commercial CTP. After the pitch spinning, the obtained green fibers were stabilized and carbonized. The properties of the respective fibers were analyzed to compare their uniformity, diameter change, and mechanical properties. Among three polymer additives, PS220 and PET261 pitches were found to be spinnable, but the carbon fibers from PET261 showed mechanical properties comparable with those of a commercial CTP produced by an air-blowing method (OCI284). The CTPs modified with polymer additive had higher ${\beta}$-resin fractions than the CTP with only thermal treatment indicating a beneficial effect of carbon fiber application.

Multi-component $ZnO-In_2O_3-SnO_2$ thin films deposited by RF magnetron co-sputtering

  • Lee, Byoung-Hoon;Hur, Jae-Sung;Back, Sang-Yul;Lee, Jeong-Seop;Song, Jung-Bin;Son, Chang-Sik;Choi, In-Hoon
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2006년도 추계학술대회 발표 논문집
    • /
    • pp.68-71
    • /
    • 2006
  • Multi-component $ZnO-In_2O_3-SnO_2$ thin films have been prepared by RF magnetron co-sputtering using targets composed of $In_3Sn_4O_{12}$(99.99%) [1] and ZnO(99.99%) at room temperature. $In_3Sn_4O_{12}$ contains less In than commercial ITO, so that it lowers cost. Working pressure was held at 3 mtorr flowing Ar gas 20 sccm and sputtering time was 30 min. RF power ratio [RF1 / (RFI + RF2)] of two guns in sputtering system was varied from 0 to 1. Each RF power was varied $0{\sim}100W$ respectively. The thickness of the films was $350{\sim}650nm$. The composit ion concentrations of the each film were measured with EPMA, AES and XPS. The low resistivity of $1-2\;{\times}\;10^3$ and an average transmittance above 80% in the visible range were attained for the films over a range of ${\delta}\;(0.3\;{\leq}\;{\delta}\;{\leq}\;0.5)$. The films also showed a high chemical stability with time and a good uniformity.

  • PDF

NH4OH 수용액 하에서 Cu 호일의 산화를 통해 합성한 CuO 나노벽의 가스센싱 특성 (Gas sensing properties of CuO nanowalls synthesized via oxidation of Cu foil in aqueous NH4OH)

  • 슈엔하이엔뷔엔;팜티엔헝;풍딘호앗;이시홍;이상욱;이준형;김정주;허영우
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2018년도 춘계학술대회 논문집
    • /
    • pp.141-141
    • /
    • 2018
  • Copper is one of the most abundant metals on earth. Its oxide (CuO) is an intrinsically p-type metal-oxide semiconductor with a bandgap ($E_g$) of 1.2-2.0 eV 1. Copper oxide nanomaterials are considered as promising materials for a wide range of applications e.g., lithium ion batteries, dye-sensitized solar cells, photocatalytic hydrogen production, photodetectors, and biogas sensors 2-7. Recently, high-density and uniform CuO nanostructures have been grown on Cu foils in alkaline solutions 3. In 2011, T. Soejima et al. proposed a facile process for the oxidation synthesis of CuO nanobelt arrays using $NH_3-H_2O_2$ aqueous solution 8. In 2017, G. Kaur et al. synthesized CuO nanostructures by treating Cu foils in $NH_4OH$ at room temperature for different treatment times 9. The surface treatment of Cu in alkaline aqueous solutions is a potential method for the mass fabrication of CuO nanostructures with high uniformity and density. It is interesting to compare the gas sensing properties among CuO nanomaterials synthesized by this approach and by others. Nevertheless, none of above studies investigated the gas sensing properties of as-synthesized CuO nanomaterials. In this study, CuO nanowalls versus nanoparticles were synthesized via the oxidation process of Cu foil in NH4OH solution at $50-70^{\circ}C$. The gas sensing properties of the as-prepared CuO nanoplates were examined with $C_2H_5OH$, $CH_3COCH_3$, and $NH_3$ at $200-360^{\circ}C$.

  • PDF