• Title/Summary/Keyword: Uniformity coefficient

Search Result 160, Processing Time 0.028 seconds

Comparison of Thyroid Doses for Shielding Material Changes in Neck Computed Tomography (Neck CT에서 차폐체 재료 변화에 따른 Thyroid 선량 비교 연구)

  • Kang, Eun Bo
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.1
    • /
    • pp.65-71
    • /
    • 2019
  • With regard to current Neck CT, Bismuth shielding boards are often being used to reduce exposure to superficial organs such as the thyroid. However, beam hardening often occurs near superficial organs with Bismuth shielding boards and variations in CT Number, Noise, and Uniformity values occur severely. This study looked into the usefulness of shielding boards made from aluminum and silicone that can be easily obtained and have good machinability by comparing them to the existing Bismuth shielding board. An Aluminum 7.3mm and a Silicone 21.5mm were made with shielding ratios similar to that of the Bismuth(0.06 mmPb). TLD (TLD-100) was placed on the thyroid area of the Phantom (RS-108T) and 5 doses were measured for each. To compare image quality, CT Number and Noise variations in axial images of the thyroid area in Neck CT images were compared. Also, variations in CT Number, Noise, and Uniformity were measured in the AAPM phantom images and compared. In the results, when thyroid doses for each shielding board were compared, the Bismuth shielding board showed a 14% reduction, the Silicone 21.5mm showed a 15% reduction, and the Aluminum 7.3mm showed a 13% reduction compared to the Non-Shield. Statistically, there were no significant differences in comparison with the Bismuth shielding board. In CT Number variations of thyroid area images, variations were largest for the Bismuth shielding board. With Uniformity evaluations of the AAPM phantom, the Bismuth shielding board was found unsuitable and the Aluminum 7.3mm and Silicone 21.5mm satisfied the acceptance criteria. Research results show that the Aluminum 7.3mm and Silicone 21.5mm have a similar shielding ratio to the high-priced Bismuth shielding board that is currently being used clinically and in comparison tests of CT Number attenuation coefficient variations, Noise, and Uniformity which are phantom image evaluation items, they proved to be better than Bismuth shielding boards. If various shielding boards are made using aluminum and silicone, sized appropriately for superficial organs, it would be useful in decreasing patient doses.

Analysis on Rainfall Distribution in a Large Experimental Rainfall Simulator with Fixed Nozzle Arrangement (고정식 노즐 배치를 가진 대형 강우모사장치의 강우 분포 특성 분석)

  • Lee, Chan-Joo;Kim, Jong Pil;Lee, Jin-Won;Kim, Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8116-8127
    • /
    • 2015
  • This study provides results from the experiment on the rainfall distribution using a large Experimental rainfall simulator with fixed nozzle arrangement. Results from the experiment on the nozzles which are crucial for rainfall simulation show standard errors expressed as percentage are 0.15~0.38% at the indoor flow testing apparatus and 0.37~0.59% at the KICT-ERS. To examine spraying range of the nozzles, radial and triangular rainfall measurement test are done. In the radial test, coefficient of uniformity (CU) lies in 0.348~0.657 in the single nozzle spraying case, while it increases up to 0.854~0.895 in the seven nozzle spraying case. This means increase of both rain rate and uniformity by means of superimposition of spraying. The CU of the triangular test falls to 0.845~0.896. The results from the experiment on the whole-scale of the KICT-ERS show that CU exceeds 0.7 for every case except the one experimental condition where a $1.5{\phi}$ nozzle is used. The CU tends to increase with increasing rainfall intensity. Comparison with the previous studies shows that KICT-ERS provides rainfall distribution above average CU.

Rainfall Distribution Characteristics of Artificial Rainfall System for Steep-Slope Collapse Model Experiment (급경사지 붕괴 모의실험을 위한 인공강우장치의 강우분포특성)

  • Jeong, Hyang-Seon;Kang, Hyo-Sub;Suk, Jae-Wook;Kim, Ho-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.828-835
    • /
    • 2019
  • An artificial rainfall system is used widely as a research tool for generating model experiment data. Artificial rainfall devices have been used in many studies, but studies of the rainfall distribution are not considered as important issues. To simulate various rainfall characteristics, it should be possible to simulate from low to high intensity, and the homogeneity of the rainfall distribution should be ensured. In this study, the maximum rainfall intensity was set to 130mm/hr and controlled by 10mm/hr. In addition, the aim was to secure a uniform coefficient value of 80% or more. To this end, rainfall tests were performed according to the nozzle type, diameter, position, and pump pressure. The rainfall test showed that the circular nozzle was suitable, and the nozzle size was 1.9mm and 1.4mm. The optimal pump pressure was found to be 3~6kg/㎠. The rainfall intensity tended to increase linearly with increasing pump pressure. Based on the rainfall test results, a rainfall control manual was produced with variables, such as pump pressure, nozzle type, and number of nozzles. As a result of rainfall verification, rainfall intensity showed a 3.1% error with a uniformity coefficient of 86%.

Water body extraction in SAR image using water body texture index

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.4
    • /
    • pp.337-346
    • /
    • 2015
  • Water body extraction based on backscatter information is an essential process to analyze floodaffected areas from Synthetic Aperture Radar (SAR) image. Water body in SAR image tends to have low backscatter values due to homogeneous surface of water, while non-water body has higher backscatter values than water body. Non-water body, however, may also have low backscatter values in high resolution SAR image such as Kompsat-5 image, depending on surface characteristic of the ground. The objective of this paper is to present a method to increase backscatter contrast between water body and non-water body and also to remove efficiently misclassified pixels beyond true water body area. We create an entropy image using a Gray Level Co-occurrence Matrix (GLCM) and classify the entropy image into water body and non-water body pixels by thresholding of the entropy image. In order to reduce the effect of threshold value, we also propose Water Body Texture Index (WBTI), which measures simultaneously the occurrence of repeated water body pixel pair and the uniformity of water body in the binary entropy image. The proposed method produced high overall accuracy of 99.00% and Kappa coefficient of 90.38% in water body extraction using Kompsat-5 image. The accuracy analysis indicates that the proposed WBTI method is less affected by the choice of threshold value and successfully maintains high overall accuracy and Kappa coefficient in wide threshold range.

Development and Evaluation of an Apparatus to Measure the Solar Heat Gain Coefficient of a Fenestration System According to KS L 9107 (KS L 9107에 의한 태양열 취득률(SHGC) 측정장치 개발 및 평가)

  • Kim, Tae-Jung;Choi, Hyun-Jung;Kang, Jae-Sick;Park, Jun-Seok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.11
    • /
    • pp.512-521
    • /
    • 2014
  • Recently, multiple glazing units, frames, complex fenestration systems, and windows with shading devices have been developed to save cooling energy in buildings. However, very little work has been conducted on developing a direct experimental test method of the solar heat gain coefficient(SHGC) for new fenestration techniques. This study aims to develop and evaluate a test apparatus to measure the SHGC, according to the KS L 9107 test method. The performance of the solar simulator was class A, B, and A, for spectral match, non-uniformity, and instability irradiance, respectively. The differences between the measured and calculated SHGC values were found to range between 0.001 and 0.011, and for all test specimens they agreed within 4%. These results establish the validity of the test apparatus. This system is thus expected to be useful in assessing the energy performance for various types of fenestration.

Numerical prediction analysis of propeller exciting force for hull-propeller-rudder system in oblique flow

  • Sun, Shuai;Li, Liang;Wang, Chao;Zhang, Hongyu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.1
    • /
    • pp.69-84
    • /
    • 2018
  • In order to analyze the characteristics of propeller exciting force, the hybrid grid is adopted and the numerical prediction of KCS ship model is performed for hull-propeller-rudder system by Reynolds-Averaged Navier Stokes (RANS) method and volume of fluid (VOF) model. Firstly, the numerical simulation of hydrodynamics for bare hull at oblique state is carried out. The results show that with the increasing of the drift angle, the coefficients of resistance, side force and yaw moment are constantly increasing, and the bigger the drift angle, the worse the overall uniformity of propeller disk. Then, propeller bearing force for hull-propeller-rudder system in oblique flow is calculated. It is found that the propeller thrust and torque fluctuation coefficient peak in drift angle are greater than that in straight line navigation, and the negative drift angle is greater than the positive. The fluctuation peak variation law of coefficient of side force and bending moment are different due to various causes.

Aerodynamics Simulation of Three Hypersonic Forebody/Inlet Models

  • Xiao, Hong;Liu, Zhenxia;Lian, Xiaochun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.456-459
    • /
    • 2008
  • The purpose of this paper is to examine the aerodynamic characteristics of three hypersonic configurations including pure liftbody configuration, pure waverider configuration and liftbody integrated with waverider configuration. Hypersonic forbodies were designed based on these configurations. For the purpose to integrate with ramjet or scramjet, all the forebodies were designed integrated with hypersonic inlet. To better understand the forebody performance, three dimensional flow field calculation of these hypersonic forebodies integrated with hypersonic inlet were conducted in the design and off design conditions. The computational results show that waverider offer an aerodynamic performance advantage in the terms of higher lift-drag ratios over the other two configurations. Liftbody offer good aerodynamic performance in subsonic region. The aerodynamic performance of the liftbody integrated with waverider configuration is not comparable to that of pure waverider in the terms of lift-drag ratios and is not comparable to that of pure liftbody in subsonic. But the liftbody integrated with waverider configuration exhibit good lateral-directional and longitudinal-directional stability characteristics. Both pure waverider and liftbody integrated with waverider configuration can provide relatively uniform flow for the inlet and offer good aerodynamic characteristics in the terms of recovery coefficient of total pressure and uniformity coefficient.

  • PDF

Simulation on Heterogeneous Deformation Behavior of AA1100 During Multi-axial Diagonal Forging Using Finite Element Analysis (유한요소해석을 이용한 다축대각단조 시 AA1100합금의 불균일 변형 거동에 관한 모사)

  • Kim, M.S.;Lee, S.E.;Lee, S.;Jeong, H.T.;Choi, S.H.
    • Transactions of Materials Processing
    • /
    • v.28 no.2
    • /
    • pp.98-104
    • /
    • 2019
  • The present study numerically simulates the deformation heterogeneity developed in AA1100 during multi-axial diagonal forging (MADF) using finite element analysis (FEA). Diagonal forging type consisting of diagonal forging (DF) and return-diagonal forging (R-DF) proved to be relatively beneficial compared to plane forging type which includes plane forging (PF) and return-plane forging (R-PF) for minimizing the non-uniformity of deformation developed in workpieces. Simulation of the effective strain generated in workpieces during the two types of forging was done using 3-D FEA. FEA shows the effect of friction coefficient on the deformation behavior on workpieces. The simulation of 2 types forging with different friction coefficients revealed that the magnitude of barreling effect and strain heterogeneity in workpieces increases with an increase in the friction coefficient.

Predicting the spray uniformity of pest control drone using multi-layer perceptron (다층신경망을 이용한 드론 방제의 살포 균일도 예측)

  • Baek-gyeom Seong;Seung-woo Kang;Soo-hyun Cho;Xiongzhe Han;Seung-hwa Yu;Chun-gu Lee;Yeongho Kang;Dae-hyun Lee
    • Journal of Drive and Control
    • /
    • v.20 no.3
    • /
    • pp.25-34
    • /
    • 2023
  • In this study, we conducted a research on optimizing the spraying performance of agricultural drones and predicted the spraying performance in various flight conditions using the multi-layer perceptron (MLP). Data was collected using a test device for pesticide spraying performance according to the water sensitive paper (WSP) evaluation. MLP training involved supervised learning to achieve a coefficient of variation (CV), which indicates the degree of uniform spraying. The performance evaluation was conducted using R-squared (R2), the test samples showed an R2 of 0.80. The results of this study showed that drone spraying performance can be predicted under various flight environments. In addition, the correlation analysis between flight conditions and predicted spraying performance will be useful for further research on optimizing the spraying performance of agricultural drones.

Basic Study for Development of Denitrogenation Process by Ion Exchange(V) -Synthesis of Nitrate-Selective Ion Exchange Resines- (이온교환법에 의한 탈질소 공정개발의 기초연구(V) -질산성 질소 선택적인 이온교환수지의 합성-)

  • 이동환;김승일;전진희;박찬영;이민규
    • Journal of Environmental Science International
    • /
    • v.9 no.4
    • /
    • pp.319-323
    • /
    • 2000
  • Nitrate-selective ion exchange resin which have bulky tertiary amine as functional group have been synthesized by the reaction of chloromethylated polystyrene-divinylbenzene copolymer and the corresponding tertiary amine [$NR_3=NE_{t3} 1, N{(C_2 H_4 H_3)}_32]$in ethanol, while commercial resin has $NMe_3$ as functional group. The fundamental properties such as bulk density, water content, appearance index, exchange capacity, effective size, uniformity coefficient of synthesized anion exchange resin (1) have been measured. The ion exchange resin (1) and (2) exhibited the better selectivity for nitrate than sulfate in both batch and continuous column experiments.

  • PDF