• Title/Summary/Keyword: Uniform thrust force

Search Result 8, Processing Time 0.022 seconds

Design of Mover for LMTT based on Capstone Design (창의공학설계를 기반으로 한 LMTT용 이동체의 설계)

  • Han, Dong-Seop;An, Tae-Won;Lee, Seong-Wook;Han, Geun-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.3
    • /
    • pp.47-52
    • /
    • 2007
  • LMTT (Linear Motor based Transfer Technology), which is a new type transfer system used in the maritime container terminal for the port automation, is driven by PM LSM (Permanent Magnetic Linear Synchronous Motor), and largely consists of a controller, shuttle car, and rail. The shuttle car is divided into the frame part, the driving part, and wheels. Because the shuttle car is supported by four wheels in opposition to have five times length for the width of it, a larger deflection than other transfer system using the linear motor occurs. This deflection changes the gap between the mover and the stator, and then brings on an ununiform thrust force. So in this study, we dealt with the structural design for the mover of the shuttle car to generate the uniform thrust force for the efficient control of it. For the investigation, the thickness for each beam of the mover was adopted as design variables, the weight of the mover as objective function, and stress and deflection of the mover as constraint condition.

  • PDF

A study on thrust and normal force by air-gap variation of a linear induction motor used for an urban railway transit (철도차량용 LIM의 공극변화에 따른 추력/수직력 특성 분석)

  • Yang, Won-Jin;Park, Chan-Bae;Lee, Hyung-Woo;Kwon, Sam-Young;Park, Hyun-June;Won, Chung-Youn
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.316-320
    • /
    • 2008
  • A light rail transit, using a linear induction motor, is generally composed with reaction plates along railroad track and the three phase primary on the vehicle. This linear induction motor is driven to keep clearance between the primary and the secondary of the ground for preventing any contact. Therefore efficiency and power factor is very low. In addition, the reaction plate installed on the ground throughout entire railway is impossible to keep uniform gap and it may cause system deterioration. In this paper, A rotary-type small-scale model of a linear induction motor for various characteristic analysis is designed. Thrust force, normal force and input current of the model by air-gap variation have been analyzed by using a Finite Element Method (FEM). The effects of air-gap variation on system performance have been considered by analysis results.

  • PDF

Analysis and Experiments on the Stability of Nonconservative Elastic System(Cantilever beam) subjected to Rocket Follower Force (로켓 종동력을 받는 비보존 탄성계(외팔보)의 안전성 해석 및 실험)

  • 김인성;박영필
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2467-2474
    • /
    • 1993
  • This paper deals with the cantilever subjected to a follower force which is generated by real rocket motor which has linearly decreasing thrust. The cantilever is assumed to be uniform and elastic one, In the theoretical analysis, the tip mass of rocket motor is considered as a rigid body and effects of its dynamic parameters are shown and compared with the experimental results. Particularly, the variation of the 2nd natural frequency due to the decreasing thrust is measured in the experiments and compared with the theoretical estimations. Approximate method is adopted in the theoretical analysis using Galerkin method by introducing 3-element modified operator and modified variable which represent eqation of motion and natural boundary conditions. In general, structural damping effects can be neglected and all the rigid body parameters must be taken into account in case of the short action time of the follower force and the relatively big tip mass like the system of this paper according to the experiment. Good agreement was obtained between the theoretical estimations and the experimental results by neglecting structural damping and considering all the rigid bidy parameters of the tip mass.

The Modified Two-axis Vector Controller of Linear Induction Motor to Apply to the Non-contact Stage with Large Workspace (대면적 비접촉 스테이지에 구동기 적용을 위한 선형유도기의 변형된 2축 벡터 제어기)

  • Jung, Kwang-Suk;Lee, Sang-Heon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.4
    • /
    • pp.385-391
    • /
    • 2008
  • To effectively cope with a complexity of kinematic metrology due to workspace enlargement of the planar stage, the linear induction motor is suggested as its new driving source. Especially, the linear induction motor under uniform plate type of secondary doesn't inherently have a periodical force ripple which is generally shown in the brushless DC motor. But, it presents a poor transient characteristic at zero or low speed zone owing to time delay of flux settling, resulting in slow response. To improve the servo property of linear induction motor and apply successfully it to the precision stage, this paper discusses a modified vector control methodology. The controller has a novel input form, fixed d-axis current, q-axis current and forward-fed DC current, to control thrust force and normal force of the linear induction motor independently. Influence of the newly introduced input and the feasibility of controller are validated experimentally.

Analysis and optimal design of fiber-reinforced composite structures: sail against the wind

  • Nascimbene, R.
    • Wind and Structures
    • /
    • v.16 no.6
    • /
    • pp.541-560
    • /
    • 2013
  • The aim of the paper is to use optimization and advanced numerical computation of a sail fiber-reinforced composite model to increase the performance of a yacht under wind action. Designing a composite-shell system against the wind is a very complex problem, which only in the last two decades has been approached by advanced modeling, optimization and computer fluid dynamics (CFDs) based methods. A sail is a tensile structure hoisted on the rig of a yacht, inflated by wind pressure. Our objective is the multiple criteria optimization of a sail, the engine of a yacht, in order to obtain the maximum thrust force for a given load distribution. We will compute the best possible yarn thickness orientation and distribution in order to minimize the total fiber volume with some displacement constraints and in order to leave the most uniform stress distribution over the whole structure. In this paper our attention will be focused on computer simulation, modeling and optimization of a sail-shape mathematical model in different regatta and wind conditions, with the purpose of improving maneuverability and speed made good.

Numerical Evaluation of Forces on TBM during Excavation in Mixed Ground Condition by Coupled DEM-FDM (개별요소법 및 유한차분법 연계 모델을 활용한 복합지반 TBM 굴진 시 TBM에 작용하는 힘의 수치해석적 분석)

  • Choi, Soon-Wook;Lee, Hyobum;Choi, Hangseok;Chang, Soo-Ho;Kang, Tae-Ho;Lee, Chulho
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.549-560
    • /
    • 2021
  • Forces exerted on a shield TBM (tunnel boring machine) such as cutter head torque, thrust force, chamber pressure, and upward force are key factors determining TBM performance. However, the forces acting on the TBM when tunnelling the mixed ground have different tendencies compared to that of the uniform ground, which could impair TBM performance. In this study, the effect of mixed ground tunnelling was numerically investigated with torque, thrust force, chamber pressure, and upward force. A coupled discrete element method (DEM) and finite difference method (FDM) model for TBM driving model was used. This numerical study simulates TBM tunnelling in mixed ground composed of upper weathered granite soil and lower weathered rock. The effect on the force acting on the TBM according to the location and slope of the boundary of the mixed ground was numerically examined.

Application technique on thrust jacking pressure of shield TBM in the sharp curved tunnel alignment by model tests (축소모형실험을 통한 급곡선 터널에서의 Shield TBM 추진 압력 적용 기술에 대한 연구)

  • Kang, Si-on;Kim, Hyeob;Kim, Yong-Min;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.335-353
    • /
    • 2017
  • This paper presents the application technique on thrust jacking pressuring of shield TBM in the sharp curved tunnel alignment by model tests. Recently, the application of shield TBM method as mechanized tunnelling is increasing to prevent the vibration and noise problems, which can be occurred in the NATM in the urban area in Korea. However, it is necessary to plan the sharp curved tunnel alignment in order to avoid the building foundation and underground structures, to develop the shield TBM operation technique in the shape curved tunnel alignment. Therefore, the main operation parameters of shield TBM in the curved tunnel alignment are reviewed and analyzed based on the case study and analytical study. The results show that the operation of shield jacking force system is the most important technique in the shape curved tunnel alignment. The simplified scaled model tests are also carried out in order to examine the ground-shield TBM head behaviour. The earth pressures acting on the head of shield TBM are investigated according to two different shield jacking force systems (uniform and un-uniform pressure) and several articulation angles. The results obtained from the model tests are analysed. These results will be very useful to understand the shield TBM head interaction behaviour due to the shield jacking operation technique in the shape curved tunnel alignment, and to develop the operation technique.

Structural Design of a Mover considering the Thermal Analysis of a Stator Module (스테이터 모듈의 열해석을 고려한 이동체의 구조설계)

  • Lee, Jeong-Myeong;Han, Dong-Seop;Lee, Seong-Uk;Han, Geun-Jo;Lee, Gwon-Sun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.367-372
    • /
    • 2006
  • When we design a linear motor, the thermal behavior investigation is one of great important considerations with respect to uniform thrust force and thermal deformation of a linear motor. In this study, we conduct the research for the structural design of the linear motor for LMTT(Linear Motor-based Transfer Technology) which is the next generation of container horizontal transfer system in order to automate a container terminal. After the dimensions of main parts for a linear motor were set up, we carried out the thermal-structural analysis of the linear motor considering the thermal analysis of the stator module.

  • PDF