• Title/Summary/Keyword: Uniform Temperature

Search Result 1,827, Processing Time 0.031 seconds

Synthesis and Characterization of $In_2O_3$ Nanowires in a Wet Oxidizing Environment (습식 산화 분위기에서의 산화 인듐 나노선의 합성 및 구조적 특성)

  • Jeong, Jong-Seok;Kim, Young-Heon;Lee, Jeong-Yong
    • Applied Microscopy
    • /
    • v.33 no.1
    • /
    • pp.17-23
    • /
    • 2003
  • Indium oxide ($In_2O_3$) nanowires were successfully synthesized by a simple reaction in a wet oxidizing environment at low temperature without metal catalyst. The nanowires were characterized by an x-ray diffraction (XRD), a scanning electron microscopy (SEM) equipped with an energy dispersive spectrometry (EDS), and a transmission electron microscopy (TEM). It was shown that the $In_2O_3$ nanowires were two types of morphology, uniform nanowires and nanowires containing $In_2O_3$ nanoparticles in its stem. It was found that lengths of the nanowires were ranges of several micrometers and their diameters were around $10{\sim}250$ nm. The growth direction of the nanowires was investigated and their growth mechanism is also discussed.

Evaluation of Physicochemical Properties of Flue-cured Leaf Tobacco during $2000{\sim}2004$ Crop Years at Various Growing Areas (생산 연도 및 지역별 황색종 잎담배의 이화학성 평가)

  • Kim Sang-Beom;Jeong Kee-Taeg;Cho Soo-Heon;Bock Jin-Young;Lee Joung-Ryoul
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • To get the information of flue-cured leaf, the chemical constituents, quality indices, leaf color and the effects of climatic factors on the physicochemical properties of leaf produced from 2000 to 2004 crop years at 6 growing areas were analysed. The average leaf chemical contents for 5 years were as follows ; nicotine 2.22%, total sugar 28.0%, total nitrogen 1.89%, ether extracts 6.37% and chlorine 0.38%. The nicotine and total nitrogen contents were low while the total sugar were high as compared with KT&G recommended contents(nicotine ; $2.5{\sim}3.0%$, total nitrogen; $2.0{\sim}2.5%$, total sugar ; below 25.0%). The variations of physicochemical properties among crop years were high while those of growing areas relatively low. The nicotine content of leaf was negatively correlated to the rainfalls in June and July sugar content was negatively correlated to the average air temperature in June and July according to crop years. The orange colored leaves were produced under the drought and long sunshine weather condition while the lemon colored leaves were produced under the contrary condition according to crop years. Blending the different crop year's leaves in the proper way may be beneficial to produce of uniform and consistent cigarettes. It is considered that the increasing of nitrogen fertilizer or improving of nitrogen uptake may be available to increase the nicotine and nitrogen and decrease the total sugar contents of flue-cured leaf tobacco.

RIE induced damage recovery on trench surface (트렌치 표면에서의 RIE 식각 손상 회복)

  • 이주욱;김상기;배윤규;구진근
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.3
    • /
    • pp.120-126
    • /
    • 2004
  • A damage-reduced trench was investigated in view of the defect distribution along trench sidewall and bottom using high resolution transmission electron microscopy, which was formed by HBr plasma and additive gases in magnetically enhanced reactive ion etching system. Adding $O_2$ and other additive gases into HBr plasma makes it possible to eliminate sidewall undercut and lower surface roughness by forming the passivation layer of lateral etching. To reduce the RIE induced damage and obtain the fine shape trench corner rounding, we investigated the hydrogen annealing effect after trench formation. Silicon atomic migration on trench surfaces using high temperature hydrogen annealing was observed with atomic scale view. Migrated atoms on crystal surfaces formed specific crystal planes such as (111), (113) low index planes, instead of fully rounded comers to reduce the overall surface energy. We could observe the buildup of migrated atoms against the oxide mask, which originated from the surface migration of silicon atoms. Using this hydrogen annealing, more uniform thermal oxide could be grown on trench surfaces, suitable for the improvement of oxide breakdown.

The effects of the surface defects on the hydroformability of extruded aluminum tubes (알루미늄 압출 관재의 표면 결함이 하이드로포밍 성형에 미치는 영향도에 관한 연구)

  • Kim D. H.;Kim B. J.;Park K. S.;Moon Y. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.247-250
    • /
    • 2005
  • The need for improved fuel efficiency, weight reduction has motivated the automotive industry to focus on aluminum alloys as a replacement for steel-based alloy. To cope with the needs for high structural rigidity with low weight, it is forecasted that substantial amount of cast components will be replaced by tubular parts which are mainly manufactured by the extruded aluminum tubes. The extrusion process is utilized to produce tubes and hollow sections. Because there is no weld seam, the circumferential mechanical properties may be uniform and advantageous for hydroforming. However the possibility of the occurrence of a surface defect is very high, especially due to the temperature increase from forming at high pressure when it comes out of the bearing and the roughness of the bearing, which cause the surface defects such as the dies line and pick-up. And when forming a extruded aluminum tube, the free surface of the tube becomes rough with increasing plastic strain. This is well known as orange peel phenomena and has a great effect not only on the surface quality of a product but also on the forming limit. In an attempt to increase the forming limit of the tubular specimen, in the present paper, surface asperities generated during the hydroforming process are polished to eliminate the weak positions of the tube which lead to a localized necking. It is shown that the forming limit of the tube can be considerably improved by simple method of polishing the surface roughness during hydroforming. And also the extent of the crack propagation caused by dies lines generated during the extrusion process is evaluated according to the deformed shape of the tube.

  • PDF

Observation of Size Effect and Measurement of Mechanical Properties of Ti Thin Film by Bulge Test (벌지 실험을 통한 Ti 박막의 크기 효과 관찰 및 기계적 물성 측정)

  • Jung, Bong-Bu;Lee, Hun-Kee;Hwang, Kyung-Ho;Park, Hyun-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.1
    • /
    • pp.19-25
    • /
    • 2013
  • In this study, the mechanical properties of a Ti thin film are measured by a bulge test. In the bulge test, uniform pressure is applied to one side of the film. Measurement of the membrane deflection as a function of the applied pressure allows one to determine the mechanical properties of the film. Ti thin films with thicknesses of 1.0, 1.5, and $2.0{\mu}m$ were deposited on a Si wafer by using an RF magnetron sputtering system. These specimens were annealed at $600^{\circ}C$ for 150, 300, and 600 s to investigate the effect of temperature on the yield stress and mechanical properties of the Ti films. The elastic modulus, residual stress, and yield stress of these membranes are measured by a bulge test. The experimental results suggest that the yield stress is sensitive to the film thickness and annealing time.

Au Catalyst Free and Effect of Ga-doped ZnO Seed Layer on Structural Properties of ZnO Nanowire Arrays

  • Yer, In-Hyung;Roh, Ji-Hyoung;Shin, Ju-Hong;Park, Jae-Ho;Jo, Seul-Ki;Park, On-Jeon;Moon, Byung-Moo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.354-354
    • /
    • 2012
  • In this study, we report the vertically aligned ZnO nanowires by using different type of Ga-doped ZnO (GZO) thin films as seed layers to investigate how the underlying GZO film micro structure affects the distribution of ZnO nanowires. Arrays of highly ordered ZnO nanowires have been synthesized on GZO thin film seed layer prepared on p-Si substrates ($7-13{\Omega}cm$) with utilize of a pulsed laser deposition (PLD). With the vapor-liquid-solid (VLS) growth process, the ZnO nanowire synthesis carries out no metal catalyst and is cost-effective; furthermore, The GZO seed layer facilitates the uniform growth of well-aligned ZnO nanowires. The influence of the growth temperature and various thickness of GZO seed layer have been analyzed. Crystallinity of grown seed layer was studied by X-Ray diffraction (XRD); diameter and morphology of ZnO nanowires on seed layer were investigated by field emission scanning electron microscopy (FE-SEM). Our results suggest that the GZO seed layer with high c-axis orientation, good crystallinity, and less lattice mismatch is key parameters to optimize the growth of well-aligned ZnO nanowire arrays.

  • PDF

In Situ X-ray Photoemission Spectroscopy Study of Atomic Layer Deposition of $TiO_2$ on Silicon Substrate

  • Lee, Seung-Youb;Jeon, Cheol-ho;Kim, Yoo-Seok;Kim, Seok-Hwan;An, Ki-Seok;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.222-222
    • /
    • 2011
  • Titanium dioxide (TiO2) has a number of applications in optics and electronics due to its superior properties, such as physical and chemical stability, high refractive index, good transmission in vis and NIR regions, and high dielectric constant. Atomic layer deposition (ALD), also called atomic layer epitaxy, can be regarded as a special modification of the chemical vapor deposition method. ALD is a pulsed method in which the reactant vapors are alternately supplied onto the substrate. During each pulse, the precursors chemisorb or react with the surface groups. When the process conditions are suitably chosen, the film growth proceeds by alternate saturative surface reactions and is thus self-limiting. This makes it possible to cover even complex shaped objects with a uniform film. It is also possible to control the film thickness accurately simply by controlling the number of pulsing cycles repeated. We have investigated the ALD of TiO2 at 100$^{\circ}C$ using precursors titanium tetra-isopropoxide (TTIP) and H2O on -O, -OH terminated Si surface by in situ X-ray photoemission spectroscopy. ALD reactions with TTIP were performed on the H2O-dosed Si substrate at 100$^{\circ}C$, where one cycle was completed. The number of ALD cycles was increased by repeated deposition of H2O and TTIP at 100$^{\circ}C$. After precursor exposure, the samples were transferred under vacuum from the reaction chamber to the UHV chamber at room temperature for in situ XPS analysis. The XPS instrument included a hemispherical analyzer (ALPHA 110) and a monochromatic X-ray source generated by exciting Al K${\alpha}$ radiation (h${\nu}$=1486.6 eV).

  • PDF

Spinning Multi Walled Carbon Nanotubes and Flexible Transparent Sheet Film

  • Jang, Hun-Sik;Lee, Seok-Cheol;Kim, Ho-Jong;Jeong, In-Hyeon;Park, Jong-Seo;Nam, Seung-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.200-200
    • /
    • 2012
  • We investigated a flexible transparent film using the spinning multi-walled carbon nanotubes (MWCNTs). Spin-capable MWCNTs on iron catalyzed on a SiO2 wafer was grown by chemical vapor deposition, which was performed at $780^{\circ}C$ using C2H2 and H2 gas. The average diameter and length of MWCNTs grown on the substrate were ~15 nm and $250{\sim}300{\mu}m$, respectively. The MWCNT sheets were produced by continuously pulling out from well-aligned MWCNTs on a substrate. The MWCNT sheet films were produced simply by direct coating on the flexible film or grass. The thickness of sheet film was remarkably decreased by alcohol spraying on the surface of sheet. The alcohol splay increased transmittance and decreased electrical resistance of MWCNT sheet films. Single and double sheets were produced with sheet resistance of ~699 and ${\sim}349{\Omega}/sq$, respectively, transmittance of 81~85 % and 67~72%, respectively. The MWCNT sheet films were heated through the application of direct current power. The flexible transparent heaters showed a rapid thermal response and uniform distribution of temperature. In addition, MWCNT yarns were prepared by spinning a bundle of MWCNTs from vertically super-aligned MWCNTs on a substrate, and field emission from the tip and side of the yarns was induced in a scanning electron microscope. We found that the field emission behavior from the tip of the yarn was better than the field emission from the side. The field emission turn-on voltages from the tip and side of MWCNT yarns were 1.6 and $1.7V/{\mu}m$, respectively, after the yarn was subjected to an aging process. Both the configuration of the tip end and the body of the yarn were changed remarkably during the field emission. We also performed the field emission of the sheet films. The sheet films showed the turn on voltage of ${\sim}1.45V/{\mu}m$ during the field emission.

  • PDF

Effects of Ta addition in Co-sputtering Process for Ta-doped Indium Tin Oxide Thin Film Transistors

  • Park, Si-Nae;Son, Dae-Ho;Kim, Dae-Hwan;Gang, Jin-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.334-334
    • /
    • 2012
  • Transparent oxide semiconductors have recently attracted much attention as channel layer materials due to advantageous electrical and optical characteristics such as high mobility, high stability, and good transparency. In addition, transparent oxide semiconductor can be fabricated at low temperature with a low production cost and it permits highly uniform devices such as large area displays. A variety of thin film transistors (TFTs) have been studied including ZnO, InZnO, and InGaZnO as the channel layer. Recently, there are many studies for substitution of Ga in InGaZnO TFTs due to their problem, such as stability of devices. In this work, new quaternary compound materials, tantalum-indium-tin oxide (TaInSnO) thin films were fabricated by using co-sputtering and used for the active channel layer in thin film transistors (TFTs). We deposited TaInSnO films in a mixed gas (O2+Ar) atmosphere by co-sputtering from Ta and ITO targets, respectively. The electric characteristics of TaInSnO TFTs and thin films were investigated according to the RF power applied to the $Ta_2O_5$ target. The addition of Ta elements could suppress the formation of oxygen vacancies because of the stronger oxidation tendency of Ta relative to that of In or Sn. Therefore the free carrier density decreased with increasing RF power of $Ta_2O_5$ in TaInSnO thin film. The optimized characteristics of TaInSnO TFT showed an on/off current ratio of $1.4{\times}108$, a threshold voltage of 2.91 V, a field-effect mobility of 2.37 cm2/Vs, and a subthreshold swing of 0.48 V/dec.

  • PDF

Fabrication and Sensing Properties of Pt-electrode/NASICON Solid Electrolyte/ Carbonate(Na2CO3-K2CO3-CaCO3system ) Electrode for CO2gas sensor (CO2용 Pt전극/NASICON고체전해질/Carbonate (Na2CO3-K2CO3-CaCO3 계) 전극의 가스 센서제작 및 특성)

  • Choi, Jin-Sam;Bae, Jae-Cheol;Bang, Yeong-Il;Lee, Deok-Dong;Huh, Jeung-Su
    • Korean Journal of Materials Research
    • /
    • v.12 no.4
    • /
    • pp.269-273
    • /
    • 2002
  • The NASICON solid electrolyte films, $Na_{1+x}Zr_2Si_xP_{3-x}O_{12}$(1.5< x < 2.3), was prepared from ceramic slurry by modified doctor-blade process. The NASICON solid electrolyte and fabricated sensors, Pt-electrode/NASICON/Carbonate$(Na_2CO_3-K_2CO_3CaCO_3\; system)$ electrode, were investigated to measure phase, microstructure and e.m.f variation for sensing $CO_2$ concentration. The uniform grain size of $2-4{\mu}m$ and major phase of sodium zirconium silicon phosphate phase, $Na_{1+x}Zr_2Si_xP_{3-x}O_{12}$was identified with X-ray diffraction patterns and scanning electron microscopy, respectively. The Nernst's slope of 84 mV/decade for $CO_2$ concentration from 500 to 8000 ppm was obtained at operating temperature of $400^{\circ}C$.