• Title/Summary/Keyword: Uniform Stress

Search Result 716, Processing Time 0.027 seconds

The structural safety diagnosis of Dabo Pagoda of Bulkuk Temple using analyses of ultrasonic wave velocity (초음파 속도 분석을 통한 불국사 다보탑 구조 안전 진단)

  • Suh, Man-Cheol;Song, In-Sun;Choi, Hui-Soo
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.3
    • /
    • pp.199-209
    • /
    • 2002
  • We have carried out a nondestructive close examination for the purpose of the structural safety diagnosis of the Dabo Pagoda of Bulkuk temple located in Kyungju, Kyungbuk Korea. For estimating the mechanical properties of each rock block of the pagoda, ultrasonic measurements were conducted at 641 points of 255 blocks. The P-wave velocity ranges from 584m/sec through 5,169m/sec, and averages 2,901m/sec Based on this result, the uniaxial compressive strength was estimated to be $93{\sim}1,943kg/cm^2\;with\;396kg/cm^2$ of average, and the index of weathering is $0.07{\sim}0.88$ with 0.43 of average, which means the moderate degree of weathering. The comparison of the rock strength of each block with the overburden acting on the block reveals that the rock blocks related to the structure of the pagoda are relatively sound for uniform stress, but it is highly possible for a concentrated stress to lead to a partial failure. We suggest a monitoring of cracks due to the concentrated stress. The parapets of 1st and 2nd floors composed of small rock pieces are severely weathered. However, this is not directly related to the structural safety of the pagoda.

  • PDF

A Study of Hydrogen Embrittlement on a Material of CNG Storage Tank (CNG 저장용기 재료의 수소취성에 관한 연구)

  • Han, J.O.;Lee, Y.C.;Lee, J.S.;Chae, J.M.;Hong, S.H.
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.2
    • /
    • pp.9-14
    • /
    • 2011
  • A set of test was conducted on a SA-372 steel for CNG storage tank to study the effect of hydrogen embrittlement. Tensile tests were carried out several conditions such as CNG, HCNG and H2 gas environment including air and Ar under the 35 MPa. Also, the test speed was set at 4*10^-4/s and 4*10^-5/s respectively. To maintain the high pressure for environmental gas during test process, we chose MTS which was installed autoclave. Test results showed that tensile stress, elongation rate and cross sectional contraction under Ar and CNG charging condition were similar to that of reference of air. And there was little bit change with test speed variations. However, hydrogen added conditions such as HCNG and H2 were revealed noticeable change in elongation rate and cross sectional contraction. Tensile stress was still uniform for all conditions. From the results, the effect of hydrogen embrittlement was confirmed on the hydrogen enriched conditions. Also its effect was showed more strong with much hydrogen concentration and slower test speed.

Internal Thermal Environment Uniformity Analysis of Mechanically Ventilated Broiler House (강제 환기식 육계사 내부 열환경 균일성 평가)

  • Kim, Da-in;Lee, In-bok;Lee, Sang-yeon;Park, Sejun;Kim, Jun-gyu;Cho, Jeong-hwa;Jeong, Hyo-hyeog;Kang, Sol-moe;Jeong, Deuk-young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.6
    • /
    • pp.65-75
    • /
    • 2022
  • Livestock industry in Korea has been growing rapidly and has reached 23 trillion Korean won in 2021. This study focuses on broiler, which is one of the largest sectors in livestock industry. As the effects of climate change get more serious, primary industry such as livestock industry is fragile to climate change since it directly interacts with nature. Therefore, maintaining suitable rearing environment is important. One of the most frequently used ventilation type for controlling the rearing environment of broiler house, tunnel ventilation, causes frequent air velocity fluctuation which makes maintaining the rearing environment important. By measuring the air temperature, relative humidity and air velocity in various points inside the broiler house, the internal thermal environment uniformity was analyzed according to length, width and zone. The experimental house was found to have dead zone with high air temperature, relative humidity and low air velocity near the end of the inlet and at the end of the broiler house. By using heat stress index to analyze quantitatively, zone with highest heat stress index was found to increase by 7.55% compared to the lowest zone. As a result, to maintain uniform rearing environment inside the broiler house, different factors must be measured and analyzed and used to operate the environmental control facilities.

Investigation on EO Characteristics of SiNx Thin Film Irradiated by Ion-beam (이온 빔 조사된 SiNx 박막의 전기 광학적 특성에 관한 연구)

  • Lee, Sang-Keuk;Oh, Byeong-Yun;Kim, Byoung-Yong;Han, Jin-Woo;Kim, Young-Hwan;Ok, Chul-Ho;Kim, Jong-Hwan;Han, Jeong-Min;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.429-429
    • /
    • 2007
  • For various applications of liquid crystal displays (LCDs), the uniform alignment of liquid crystal (LC) molecules on treated surfaces is significantly important. Generally, a rubbing method has been widely used to align the LC molecules on polyimide (PI) surfaces. Rubbed PI surfaces have suitable characteristics, such as uniform alignment. However, the rubbing method has some drawbacks, such as the generation of electrostatic charges and the creation of contaminating particles. Thus, we strongly recommend a non contact alignment technique for future generations of large high-resolution LCDs. Most recently, the LC aligning capabilities achieved by ultraviolet and ion-beam exposures which are non contact methods, on diamond-like carbon (DLC) inorganic thin film layers have been successfully studied because DLC thin films have a high mechanical hardness, a high electrical resistivity, optical transparency, and chemical inertness. In addition, nitrogen-doped DLC (NDLC) thin films exhibit properties similar to those of the DLC thin films and a higher thermal stability than the DLC thin films because C:N bonding in the NDLC thin filmsis stronger against thermal stress than C:H bonding in the DLC thin films. Our research group has already studied the NDLC thin films by an ion-beam alignment method. The $SiN_x$ thin films deposited by plasma-enhanced chemical vapor deposition are widely used as an insulation layer for a thin film transistor, which has characteristics similar to those of DLC inorganic thin films. Therefore, in this paper, we report on LC alignment effects and pretilt angle generation on a $SiN_x$, thin film treated by ion-beam irradiation for various N ratios

  • PDF

Seismic Analysis of Tunnel in Transverse Direction Part I: Estimation of Seismic Tunnel Response via Method of Seismic Displacement (터널 횡방향 지진해석 Part I: 응답변위법을 통한 터널의 지진응답 예측)

  • Park, Du-Hee;Shin, Jong-Ho;Yun, Se-Ung
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.6
    • /
    • pp.57-70
    • /
    • 2010
  • Recent earthquakes have demonstrated that the tunnels, which were once considered to be highly resistant to earthquakes, are susceptible to substantial damage under severe seismic loading. Among various modes of deformation under an earthquake loading, the response of the tunnel in the transverse direction is known to be the critical mode. This paper investigates the seismic response of the tunnel in the transverse direction using the method of seismic displacement, which is a type of pseudo-static analysis. Firstly, the methods of calculating the ground deformation are compared. It is shown that the single and double cosine may not provide an accurate estimation of the ground deformation, and that a one-dimensional site response analysis needs to be performed for a more reliable evaluation. Secondly, the tunnel responses are calculated using the simplified, analytical, and numerical solutions. It is demonstrated that the simplified method provides poor estimates of the tunnel response ground deformation. The analytical solution is shown to be effective in modeling circular tunnels in uniform ground, but has serious limitation in modeling tunnel response in non-uniform ground. Numerical analyses are shown to be applicable to all cases, and give the most accurate estimates of the tunnel response. It is also demonstrated that the linear solutions can be so conservative that the soil nonlinearity needs to be accounted for more accurate evaluation of the tunnel response.

Analysis of Plate Cutting Performance of Aluminum Linear Shaped Charge with Non-uniform Penetration Performance (불균일한 침투성능을 갖는 알루미늄 선상성형작약의 판재 절개성능 분석)

  • Young Jae Kim
    • Journal of the Korea Society for Simulation
    • /
    • v.33 no.3
    • /
    • pp.27-35
    • /
    • 2024
  • Generally, an Linear Shaped Charge(LSC) is used for cutting a mechanical structure of various weapon systems. The penetration performance of an LSC is subjected to the type of explosive, the amount of explosive charge per unit length, the type of sheath material, stand-off distance from the target etc. In addition, the non-uniform cross-sectional shape originated from the manufacturing process may affect penetration performance. In this study, in order to analyze the penetration performance of an LSC, Computed Tomography(CT) images of its internal shape were taken and penetration experiments of the LSC were performed on a square metal bar. The experimental results showed that the penetration depths varied depending on the longitudinal position of the LSC, and at some locations, did not meet the required cutting performance. The LSC used in the experiment was manufactured to be able to cut a 4 mm plate, but in the results of the penetration performance experiment, there were many locations where the penetration depth was less than 4 mm. To find this reason, the penetration performance that did not meet the required cutting performance was simulated through AUTODYN based numerical analysis to confirm whether the LSC is cut in the plate. Through numerical analysis, it was confirmed that the penetration performance of an LSC varies depending on the thickness of the incision target due to the distribution of stress.

Heat dissipation of Al2O3 Insulation layer Prepared by Anodizing Process for Metal PCB (Metal PCB에 있어서 양극산화법으로 제작한 Al2O3절연막의 방열특성)

  • Jo, Jae-Seung;Kim, Jeong-Ho;Ko, Sang-Won;Lim, Sil-Mook
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.2
    • /
    • pp.33-37
    • /
    • 2015
  • High efficiency LED device is being concerned due to its high heat loss, and such heat loss will cause a shorter lifespan and lower efficiency. Since there is a demand for the materials that can release heat quickly into the external air, the organic insulating layer was required to be replaced with high thermal conductive materials such as metal or ceramics. Through anodizing the upper layer of Al, the Breakdown Voltage of 3kV was obtained by using an uniform thickness of $60{\mu}M$ aluminum oxide($Al_2O_3$) and was carried out to determine the optimum process conditions when thermal cracking does not occur. Two Ni layers were formed above the layer of $Al_2O_3$ by sputtering deposition and electroplating process, and saccharin was added for the purpose of minimizing the remain stress in electroplating process. The results presented that the 3-layer film including the Ni layer has an adhesive force of 10N and the thermal conductivity for heat dissipation is achieved by 150W/mK level, and leads to improvement about 7 times or above in thermal conductivity, as opposed to the organic insulation layer.

Nonlinear thermal buckling behavior of functionally graded plates using an efficient sinusoidal shear deformation theory

  • Bouiadjra, Rabbab Bachir;Bedia, E.A. Adda;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.48 no.4
    • /
    • pp.547-567
    • /
    • 2013
  • Nonlinear behavior of functionally graded material (FGM) plates under thermal loads is investigated here using an efficient sinusoidal shear deformation theory. The displacement field is chosen based on assumptions that the in-plane and transverse displacements consist of bending and shear components, and the shear components of in-plane displacements give rise to the sinusoidal distribution of transverse shear stress through the thickness in such a way that shear stresses vanish on the plate surfaces. Therefore, there is no need to use shear correction factor. Unlike the conventional sinusoidal shear deformation theory, the proposed efficient sinusoidal shear deformation theory contains only four unknowns. The material is graded in the thickness direction and a simple power law based on the rule of mixture is used to estimate the effective material properties. The neutral surface position for such FGM plates is determined and the sinusoidal shear deformation theory based on exact neutral surface position is employed here. There is no stretching-bending coupling effect in the neutral surface-based formulation, and consequently, the governing equations and boundary conditions of functionally graded plates based on neutral surface have the simple forms as those of isotropic plates. The non-linear strain-displacement relations are also taken into consideration. The thermal loads are assumed as uniform, linear and non-linear temperature rises across the thickness direction. Closed-form solutions are presented to calculate the critical buckling temperature, which are useful for engineers in design. Numerical results are presented for the present efficient sinusoidal shear deformation theory, demonstrating its importance and accuracy in comparison to other theories.

Consolidation Characteristics of Clay and Pond Ash Soil Mixture (점토와 매립회 혼합토의 압밀특성)

  • Chae, Deok-Ho;Yune, Chan-Young;Kim, Kyoung-O;Cho, Wan-Jei
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.45-54
    • /
    • 2011
  • In this study, the consolidation characteristics are investigated on the artificial soil mixture of kaolinite, fine soils representing dredged soils and reclaimed coal ash from the ash ponds. A large sedimentation chamber was designed and manufactured to produce the artificial soil mixture with uniform stress history. In order to examine the consolidation characteristics in lateral and vertical directions, standard consolidation and Rowe Cell tests were performed. From the results of standard consolidation tests, the artificial soil mixture with coal ash showed lower compressibility and the larger consolidation coefficients enough to aid in early stabilization of the reclaimed sites compared with the kaolinite only. Also, in order to examine the consolidation characteristics when applying vertical drains, the drainage material was installed and tested in the Rowe Cell. The Rowe Cell test results show that the artificial soil mixture yields higher coefficient of consolidation. Thus, the application of artificial soil mixture on the reclaimed sites can shorten the consolidation time.

Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation

  • Bourada, Fouad;Bousahla, Abdelmoumen Anis;Tounsi, Abdeldjebbar;Bedia, E.A. Adda;Mahmoud, S.R.;Benrahou, Kouider Halim;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.25 no.6
    • /
    • pp.485-495
    • /
    • 2020
  • This paper, presents the dynamic and stability analysis of the simply supported single walled Carbon Nanotubes (SWCNT) reinforced concrete beam on elastic-foundation using an integral first-order shear deformation beam theory. The condition of the zero shear-stress on the free surfaces of the beam is ensured by the introduction of the shear correction factors. The SWCNT reinforcement is considered to be uniform and variable according to the X, O and V forms through the thickness of the concrete beam. The effective properties of the reinforced concrete beam are calculated by employing the rule of mixture. The analytical solutions of the buckling and free vibrational behaviors are derived via Hamilton's principle and Navier method. The analytical results of the critical buckling loads and frequency parameters of the SWCNT-RC beam are presented in the form of explicit tables and graphs. Also the diverse parameters influencing the dynamic and stability behaviors of the reinforced concrete beam are discussed in detail.