• Title/Summary/Keyword: Uniform Film

Search Result 719, Processing Time 0.522 seconds

A Control of Pretilt Angles for Homeotropic Aligned NLC on the SiOx Thin Film Surface by Electron Beam Evaporation

  • Kang, Hyung-Ku;Han, Jin-Woo;Kang, Soo-Hee;Kim, Jong-Hwan;Kim, Oung-Hwan;Hwang, Jeoung-Yeon;Seo, Dae-Shik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.6
    • /
    • pp.272-275
    • /
    • 2005
  • We studied the control of pretilt angles for homeotropic aligned nematic liquid crystal (NLC) on SiOx thin film surface by $45^{\circ}$ evaporation method with electron beam system. The uniform vertical LC alignment on. the SiOx thin film surfaces with electron beam evaporation was achieved. It is considered that the LC alignment on SiOx thin film by $45^{\circ}$ electron beam evaporation is attributed to elastic interaction between LC molecules and micro-grooves at the SiOx thin film surface created by evaporation. The pretilt angles of about $3.5^{\circ}$ in aligned NLC on SiOx thin film surfaces by electron beam evaporation of $45^{\circ}$ were measured. Consequently, the high pretilt angles of the NLC on the SiOx thin film by $45^{\circ}$ oblique electron beam evaporation method can be achieved.

Effect of Wavy Flow of Vertical Falling Film on the Absorption Performance (흡수성능에 미치는 수직 액막 파동의 영향에 관한 연구)

  • 김정국;조금남
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.2
    • /
    • pp.194-201
    • /
    • 2004
  • In the present study, the improvement of absorption characteristics on combined heat and mass transfer process in a falling film of a vertical absorber by change of geometric parameters were studied experimentally and analytically. The energy and diffusion equations are solved simultaneously to give the temperature and concentration variations at the liquid solution-refrigerant vapor interface and at the wall. Absorption behaviors of heat and mass transfer were analyzed through falling film of the LiBr aqueous solution contacted by refrigerant vapor in the absorber. Effects of film Reynolds number, geometric parameters by insert device (spring) and flow pattern on heat and mass transfer performances have been also investigated. Especially, effects of the flow pattern by geometric parameters have been considered to observe the total heat and mass transfer rates through falling film along the absorber. As a numerical and experimental result, maximum absorption rate was shown at the wave-flow by insert device (spring). The error ranges between experiment and analysis were from 5.8 to 12% at Re$_{f}$ > 100.0.

Enhancement of Absorption Performance Due to the Wavy Film of the Vertical Absorber Tube

  • Kim Jung-Kuk;Cho Keum-Nam
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.2
    • /
    • pp.41-48
    • /
    • 2006
  • Absorption performance at the vertical interface between refrigerant vapor and liquid solution of $LiBr-H_{2}O$ solution was enhanced by the waves formed due to the interfacial shear stress. The present study investigated experimentally and analytically the improvements of absorption performance in a falling film by wavy film flow. The dynamic parameter was the film Reynolds numbers ranged from 50 to 150. The energy and diffusion equations were solved simultaneously to find the temperature and concentration profiles at the interface of liquid solution and refrigerant vapor. Absorption characteristics due to heat and mass transfer were analyzed for the falling film of the LiBr aqueous solution contacted by refrigerant vapor in the absorber. Absorption performance showed a peak value at the solution flow rate of $Re_{f}>100$. Absorption performance for the wavy film flow was found to be greater by approximately 10% than that for uniform film flow. Based on numerical and experimental results, the maximum absorption rate was obtained for the wavy flow caused by spring insert. The difference between the measured and the predicted results were ranged from 5.8 to 12%.

Fabrication and Characterization of Thin Film Supercapacitor using $WO_3$ ($WO_3$를 이용한 박막형 슈퍼캐패시터의 제작 및 특성 평가)

  • 신호철;신영화;임재홍;윤영수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.575-578
    • /
    • 2000
  • In this work, all solid-state thin film supercapacitor(TFSC) was fabricated using tungsten trioxide (WO$_3$) with a structure WO$_3$/LiPON/WO$_3$/Pt/TiO$_2$/Si (substrate). After TiO$_2$ was deposited on Si(100) wafer by d.c. reactive sputtering, the Pt current collector films were grown on TiO$_2$glue layer without breaking vacuum by d.c. sputtering. Fabrication conditions of WO$_3$ thin film were such that substrate temperature, working pressure, gas ratio of $O_2$/Ar and r.f. power were room temperature, 5 mTorr, 20% (O$_2$(8sccm)/Ar(32sccm)) and 200W, respectively. LiPON electrolyte film were grown on the WO$_3$ film using r.f. magnetron sputtering at room temperature. The XRD pattern of the as-deposited WO$_3$ thin film were shown no crystalline peak (amorphous). The SEM image of as-deposited WO$_3$ thin film showed that the surface is smooth and uniform. The capacitiy of as-fabricated TFSC was 0$\times$10$^{-2}$ F/$\textrm{cm}^2$-${\mu}{\textrm}{m}$.

  • PDF

Liquid Crystal Aligning Capabilities for Nematic Liquid Crystal on the ZrOx Thin Film Layer with E-beam Evaporation

  • Kim, Mi-Jung;Han, Jin-Woo;Kim, Young-Hwan;Kim, Byoung-Yong;Han, Jeong-Min;Moon, Hyun-Chan;Park, Kwang-Bum;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.378-378
    • /
    • 2007
  • In this study, liquid crystal (LC) aligning capabilities for homeotropic alignment on the $ZrO_x$ thin film by electron beam evaporation method were investigated. Also, the control of pretilt angles and thermal stabilities of the NLC treated on $ZrO_x$ thin film were investigated. The uniform LC alignment on the $ZrO_x$ thin film surfaces and good thermal stabilities with electron beam evaporation can be achieved. It is considerated that the LC alignment on the $ZrO_x$ thin film by electron beam evaporation is attributed to elastic interaction between LC molecules and micro-grooves at the $ZrO_x$ thin film surface created by evaporation. In addition, it can be achieved the good electro-optical (EO) properties of the VA-LCD on $ZrO_x$ thin film layer with. oblique electron beam evaporation.

  • PDF

Thermal Characteristics of Heating Films Including Conductive Graphite (전도성 흑연을 포함하는 발열 필름의 열적 특성)

  • Choi, Gyuyeon;Oh, Weontae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.6
    • /
    • pp.500-504
    • /
    • 2020
  • Heating films were prepared with composites of poly (methyl methacrylate) and conductive graphite. The as-prepared composite was deposited on a PET film and then fabricated using a bar coater to produce a film with uniform thickness. Copper electrodes were attached to both ends of the as-prepared film, and the heating characteristics of the film were analyzed while applying a DC voltage. The electrical conductivity and heating temperature of the heating films depended on the size, structure, content, and the dispersion characteristics of the graphite in the composite. The thermal energy was adjusted by controlling the electrical energy, based on the Joule heating theory. The electrical resistance of the film was altered in proportion to Ohm's law, and the heating temperature was changed according to the structure of the film (interelectrode spacing or electrode length) and the conductive graphite content. When the content of conductive graphite in the film increases, the electrical resistance decreases, and the heating temperature increases; however, there is no significant change above a certain content (50%).

Influence of the Thin-Film Ag Electrode Deposition Thickness on the Current Characteristics of a CVD Diamond Radiation Detector

  • Ban, Chae-Min;Lee, Chul-Yong;Jun, Byung-Hyuk
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.4
    • /
    • pp.131-136
    • /
    • 2018
  • Background: We investigated the current characteristics of a thin-film Ag electrode on a chemical vapor deposition (CVD) diamond. The CVD diamond is widely recognized as a radiation detection material because of its high tolerance against high radiation, stable response to various dose rates, and good sensitivity. Additionally, thin-film Ag has been widely used as an electrode with high electrical conductivity. Materials and Methods: Considering these properties, the thin-film Ag electrode was deposited onto CVD diamonds with varied deposition thicknesses (${\fallingdotseq}50/98/152/257nm$); subsequently, the surface thickness, surface roughness, leakage current, and photo-current were characterized. Results and Discussion: The leakage current was found to be very low, and the photo-current output signal was observed as stable for a deposited film thickness of 98 nm; at this thickness, a uniform and constant surface roughness of the deposited thin-film Ag electrode were obtained. Conclusion: We found that a CVD diamond radiation detector with a thin-film Ag electrode deposition thickness close to 100 nm exhibited minimal leakage current and yielded a highly stable output signal.

Study on the Fabrication of Embedded Capacitor Films for PWB substrate (PWB 기판용 Embedded Capacitor필름 제작에 관한 연구)

  • 이주연;조성동;백경욱
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.11a
    • /
    • pp.21-27
    • /
    • 2001
  • Epoxy/BaTiO$_3$composite film type capacitors with excellent stability at room temperature, uniform thickness, and electrical properties over a large area were successfully fabricated. We fabricated composite capacitor films with good film formation capability and easy process ability, from ACF-resin as a matrix and two kinds of BaTiO$_3$powders as fillers to increase the dielectric constant of the composite film. The crystal structure of the powders and its effects on dielectric constant of the films were investigated by X-ray diffraction. DSC and dielectric properties tests were conducted to decide the right curing temperature and the optimum amount of the curing agent. As a result, the capacitors of $7{\mu}{\textrm}{m}$ thick film with 10nF/cm2 and low leakage current were successfully demonstrated.

  • PDF

Water vapor barrier properties of polymer-like amorphous carbon deposited polyethylene naphthalate film

  • Kim, Jeong-Yong;Park, Gyu-Dae;Song, Ye-Seul;Lee, Hui-Jin;Vu, Minh Canh;Kim, Seong-Ryong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.303.1-303.1
    • /
    • 2016
  • Polymer-like amorphous carbon films were deposited on polyethylene naphthalate (PEN) substrate by plasma-enhanced chemical vapor deposition (PECVD) and their water vapor transmission rates (WVTR) were tested. propane was used as precursors. To make a polymer-like amorphous carbon film the deposition rate, surface roughness, light transmittance, and WVTR of the films were characterized as a function of the precursor feed ratio and plasma power. The water vapor transmission rates of bare PEN film and single layer PAC on PEN substrate were 6.95 g/m2/day and 0.3 g/m2/day, respectively. The superior property the water vapor permeability of thin layers of PAC was attributed to uniform coverage and good adhesion between PAC film and PEN substrate.

  • PDF

Effect of Chemical Passivation Treatment and Flow on the Corrosion of 304 Stainless Steel in Hydrochloric Acid Solution

  • Zhao, Jie;Cheng, Cong Qian;Cao, Tie Shan
    • Corrosion Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.273-279
    • /
    • 2015
  • Effects of passive film quality by chemical passivation and solution flow on the corrosion behavior of 304 stainless steel in HCl solution were investigated using a coloration indicator, and by corrosion weight loss, electrochemical polarization and element dissolution measurements. A high redness degree suggests a low passive-film integrity for 304 stainless steel following air exposure, while the minimum redness degree for the samples after chemical passivation suggests a high passive-film integrity. In the static condition, samples subjected to air exposure exhibited a high corrosion rate and preferential dissolution of Fe. Chemical passivation inhibited the corrosion rate due to the intrinsically high structural integrity of the passive film and high concentrations of Cr-rich oxides and hydroxide. Solution flow accelerated corrosion by promoting both the anodic dissolution reaction and the cathodic reaction. Solution flow also altered the preferential dissolution to fast uniform dissolution of metal elements.