• 제목/요약/키워드: Unidirectional current

검색결과 67건 처리시간 0.023초

A New Approach of BLDC Motor Using Unidirectional Current in the Driver Circuit and its Future Prospects

  • Yasuhiro, Komatsu;Zawawi, Syed Abdul Kadir
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권1호
    • /
    • pp.91-98
    • /
    • 2012
  • Climate change and other pollutions make a huge demand of environment friendly and high efficient motors especially Brushless DC (BLDC) motors. Generally, bidirectional energized BLDC motors are used widely; however, inverter devices used in the driver put fear of being effected by noise. This paper proposes unidirectional energized BLDC motor which utilizes asymmetrical H-bridge circuit as the driver circuit. The Minato motor is one of the pioneers in unidirectional energized system. The use of bar magnets in the rotor is one of the biggest disadvantages of the motor. We proposed using tabular magnets. The paper compares the power consumption and efficiency of the Minato motor and the proposed motor. During high speed rotation, undesirable armature current is generated that has a deceleration characteristic. This current lowers the motor's efficiency. In this paper, we propose the solutions and show comparison through equations of the copper loss ratio for the Minato and our proposed motors. The third motor, which has the highest efficiency, was discovered during examination of the equations.

단방향 보조 스위치를 갖는 개선된 소프트 스위칭 인버터 (An Improved Soft-Switching Inverter with An Unidirectional Auxiliary Switch)

  • 손세진;이귀준;김래영;현동석
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2010년도 하계학술대회 논문집
    • /
    • pp.376-377
    • /
    • 2010
  • In this paper, novel unidirectional auxiliary resonant commutated pole is proposed to improve the performance of zero-voltage soft-switching inverter. The proposed circuit keeps the advantages of the original soft-switching inverter, while providing more effective resetting capability in magnetizing current. Based on the advanced reset mechanism, auxiliary switches operate under a complete zero-current condition. The operating principle and steady-state analysis are presented theoretically, according to its operating modes. Accordingly, it proves the fact that the proposed unidirectional auxiliary resonant commutated pole breaks an unwanted magnetizing current loop effectively. The performance of the proposed circuit is verified by several simulation results.

  • PDF

연계형 태양광발전설비의 새로운 오동작 방지 및 재병입 알고리즘 제안 (Algorithm for Preventing Malfunction and Reclosing in Grid-Connected PV Systems)

  • 황민수;전태현
    • 조명전기설비학회논문지
    • /
    • 제26권7호
    • /
    • pp.70-76
    • /
    • 2012
  • In general, the unidirectional power flow is normal in distribution feeders before activation of distributed power source such as PV. However, the interactive power flow is likely to occur in case of the power system under distributed generation. This interactive power flow can cause an unexpected effect on convectional protection coordination systems designed based only on the unidirectional power flow system. When the power line system encounters a problem, the interactive power flow can be a contributed current source and this makes the fault current bigger or smaller compared to the unidirectional case. The effect of interactive power flow is varied depending on the location of the point to ground fault, relative location of the PV, and connection method. Therefore it is important to analyse characteristics of fault current and interactive flow for various transformer connection and location of the PV. This paper proposes a method of improved protection coordination which can be adopted in the protective device for customers in distribution feeders interconnected with the PV. The proposed method is simulated and analysed using PSCAD/EMTDC under various conditions.

An Efficient and High-gain Inverter Based on The 3S Inverter Employs Model Predictive Control for PV Applications

  • Abdel-Rahim, Omar;Funato, Hirohito;Junnosuke, Haruna
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권4호
    • /
    • pp.1484-1494
    • /
    • 2017
  • We present a two-stage inverter with high step-up conversion ratio engaging modified finite-set Model Predictive Control (MPC) for utility-integrated photovoltaic (PV) applications. The anticipated arrangement is fit for low power PV uses, the calculated efficiency at 150 W input power and 19 times boosting ratio was around 94%. The suggested high-gain dc-dc converter based on Cockcroft-Walton multiplier constitutes the first-stage of the offered structure, due to its high step-up ability. It can boost the input voltage up to 20 times. The 3S current-source inverter constitutes the second-stage. The 3S current-source inverter hires three semiconductor switches, in which one is functioning at high-frequency and the others are operating at fundamental-frequency. The high-switching pulses are varied in the procedure of unidirectional sine-wave to engender a current coordinated with the utility-voltage. The unidirectional current is shaped into alternating current by the synchronized push-pull configuration. The MPC process are intended to control the scheme and achieve the subsequent tasks, take out the Maximum Power (MP) from the PV, step-up the PV voltage, and introduces low current with low Total Harmonic Distortion (THD) and with unity power factor with the grid voltage.

배전계통에 연계된 열병합발전 시스템의 개선된 보호협조 방안에 관한 연구 (Advanced Protective Coordination Schemes of Utility Interconnected Cogeneration Systems)

  • 최준호;정성교;추동욱;김낙경;손학식;김재철
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제49권6호
    • /
    • pp.280-288
    • /
    • 2000
  • Recently, there has been growing interest in utilizing cogeneration(COGN) systems with a high-energy efficiency due to the increasing energy consumption and the lacking of energy resource. But an insertion of COGN system to existing power distribution system can cause several problems such as voltage variations, harmonics, protective coordination, increasing fault current etc, because of reverse power of COGN, especially in protective coordination. A study on a proper coordination with existing one is being required. The existing power distribution system is operated with radial type by one source and protection system is composed based on unidirectional power source. But an Insertion of COGN system to power distribution system change existing unidirectional power source system to bidirectional power source. Therefore, investigation to cover whole field of power distribution system must be accomplished such as changing of protection devices rating by increasing fault current, reevaluation of protective coordination. In this paper, simulation using PSCAD/EMTDC was accomplished to analyze effect of COGIN on distribution fault current. Also, the existing protection system of 22.9[kV] power distribution system and customers protection system to protect of COGIN was analyzed and the study on protective coordination between of two protection system accomplished.

  • PDF

단방향 링크를 지원하는 이동 Ad Hoc 라우팅 프로토콜 (Mobile Ad Hoc Routing Protocol Supporting Unidirectional Links)

  • 이광배;김현유;정근원
    • 전기전자학회논문지
    • /
    • 제5권1호
    • /
    • pp.59-66
    • /
    • 2001
  • 본 논문에서는 단방향 링크를 포함하는 이동 Ad Hoc 망에 대해 비대칭 경로를 지원하는 동적 소스 라우팅 프로토콜을 제안하였다. 기존의 동적 소스 라우팅 프로토콜은 양방향 링크로 구성된 대칭경로만을 지원하도록 구현되어있다. 그러나 실제적인 무선환경에서는 단말의 비대칭성이나 무선환경 특성등에 기인한 단방향 링크가 존재할 수 있다. 따라서 본 논문에서는 좀 더 일반적인 무선환경에 맞는 이동 Ad Hoc 망 라우팅 프로토콜을 구현하기 위하여 단방향 링크를 지원하도록 하였다. 특히 이동성으로 인한 경로 실패를 인식한 경우, 신속한 경로 재설정을 수행하기 위해 다중경로유지 기법을 사용하였다. 성능평가는 평균 경로설정시간 및 평균 데이터수신율에 대해 수행하였으며, 그 값을 얻기 위해 경로 상에 중간노드캐쉬의 사용여부 및 서로 다른 이동성과 연결성을 제공하는 시나리오를 고려하여, 100초 단위로 900초까지 성능평가를 수행하였다.

  • PDF

복굴절 광섬유를 이용한 전류측정에 관한 연구 (A Study on the Current Measurement Using birefringence Fiber)

  • 장남영;최평석;은재정
    • 융합신호처리학회논문지
    • /
    • 제6권2호
    • /
    • pp.59-66
    • /
    • 2005
  • 광섬유 전류 센서 특히, 단방향 편광형 광섬유 전류센서(PFOCS)에서 측정전류 정밀도는 센싱 광섬유상의 외부 환경적 변화요인 즉, 음향 진동의 변화와 전류 도체 주위에 감긴 센싱 광섬유 밴딩과 같은 내부적 변화요인에 의해 악영향을 받는다. 이와 같은 변화 요인들은 센서 헤드를 구성하는 센싱 광섬유의 복굴절 특성에 영향을 주어 결국 오전류 측정의 원인이 되고, 따라서, 단방향 PFOCS에 대한 보상 기술인 가역적 PFOCS를 이용하여, 이와 같은 복굴절 변화요인들을 억제할 수 있다. 따라서, 본 논문에서는 가역적 PFOCS의 성능해석을 위해 센싱 광섬유 상에 존재하는 외부 환경적 요인과 내부 요인으로 인한 편광도 오차와 오전류를 수치해석 하였다. 또한, 가역적 PFOCS 구조에서 일반 반사경과 faraday 회전경(FRM)의 사용으로 인한 효과 및 서로 다른 광원의 파장에 대한 효과를 비교하였다. 그 결과, 편광도 오차는 $633{\cal}nm$에서, 일반 반사경 및 FRM을 사용했을 때, 각각 $2.3\%$$0.0196\%$로 계산되었고, $1300{\cal}nm$에서 편광도 오차는 각각 $9.87\%,\;0.0196\%$로 계산되었다. 또한, 단방향 PFOCS와 비교한 오전류 수치해석 결과, 일반 반사경 및 FRM을 사용한 경우에 각각 $9.82{\times}10^{-9}A,\;1.4{\times}10^{-17}A$로 단방향 PFOCS의 경우보다 외부 환경변화 및 내부 변화요인에 강인한 센서 구조임이 확인되었다.

  • PDF

저압계통 연계형 마이크로그리드의 보호감시 시스템 (Supervisory Protection System of Microgird Interconnected to Low Voltage Grids)

  • 정태영;백영식
    • 전기학회논문지
    • /
    • 제60권1호
    • /
    • pp.36-42
    • /
    • 2011
  • This paper mainly proposes the protective coordination scheme of the microgrid system. The microgrid protection is identical to the conventional protection system separating the normal part and contingency part to reduce damage when the contingency occur at power cables, facilities. But they are different in the protection type. The conventional protection system only considers unidirectional current. However the microgrid protection should be considered not only unidirectional current but also backfeed current because various microsources and loads are installed in the microgrid system. In case the contingency occurs in microsource, when microgrid is interconnected to grid, the protection system should be configured to not separate microgrid from grid before the microsource is isolated to microgrid. And in case of fault occur in power system, the microsources should not isolated to microgrid before the static switch at PCC is tripped to separate from power system. Considering these characteristic of microgird, this paper proposes the protective coordination scheme of microgrid and implemented the on-line real time monitoring system. Especially in case the microgrid is connected to low voltage distribution system with 220/380V voltage level, the proposed protection method with power IT technology can solve the problems when the existing protective devices only applied to the microgrid system.

분산전원 연계선로에서 지락고장시 중성선의 과전류 해석 및 보호계전기의 새로운 알고리즘 (An Overcurrent Analysis in Neutral Line and Algorithm to Prevent Malfunction of Relay in Distributed Generations)

  • 신동열;김동명;차한주
    • 전기학회논문지
    • /
    • 제58권10호
    • /
    • pp.1916-1922
    • /
    • 2009
  • Introducing distributed generators(DGs) to utility distribution system can cause malfunction of relay on the grid when ground faults or severe load unbalances are occurred on the system. Because DGs interconnected to the grid can contribute fault currents and make bidirectional power flows on the system, fault currents from DGs can cause an interference of relay operation. A directional over current relay(DOCR) can determine the direction of power flow whether a fault occurs at the source side or load side through detecting the phases of voltage and current simultaneously. However, it is identified in this paper that the contributed fault current(Ifdg) from the ground source when was occurred to contribute single-line-to-ground(SLG) fault current, has various phases according to the distances from the ground source. It means that the directionality of Ifdg may not be determined by simply detecting the phases of voltage and current in some fault conditions. The magnitude of Ifdg can be estimated approximately as high as 3 times of a phase current and its maximum is up to 2,000 A depending on the capacity of generation facilities. In order to prevent malfunction of relay and damage of DG facilities from the contribution of ground fault currents, Ifdg should be limited within a proper range. Installation of neutral ground reactor (NGR) at a primary neutral of interconnection transformer was suggested in the paper. Capacity of the proposed NGR can be adjusted easily by controlling taps of the NGR. An algorithm for unidirectional relay was also proposed to prevent the malfunction of relay due to the fault current, Ifdg. By the algorithm, it is possible to determine the directionality of fault from measuring only the magnitude of fault current. It also implies that the directionality of fault can be detected by unidirectional relay without replacement of relay with the bidirectional relay.

금속기지 나노복합재용 탄소나노섬유 일방향 배열을 위한 이종재 인발 연구 (The study of drawing on the heterogeneous materials for the unidirectional alignment of carbon nanofiber in metal matrix nanocomposite)

  • 백영민;이상관;엄문광;김병민
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.301-301
    • /
    • 2003
  • In current study, Nanocomposites are reinforced with carbon nanofiber, carbon nanotube and SiC, etc. Since the nano reinforcements have the excellent mechanical, thermal and electrical properties compared with that of existing composites, it has lately attracted considerable attention in the various areas. Cu have been widely used as signal transmission materials for electrical electronic components owing to its high electrical conductivity. However, it's size have been limited to small ones due to its poor mechanical properties. Until now, strengthening of the copper alloy was obtained either by the solid solution and precipitation hardening by adding alloy elements or the work hardening by deformation process. Adding the alloy elements lead to reduction of electrical conductivity. In this aspect, if carbon nanofiber is used as reinforcement which have outstanding mechanical strength and electric conductivity, it is possible to develope Cu matrix nanocomposite having almost no loss of electric conductivity. It is expected to be innovative in electric conducting material market. The unidirectional alignment of carbon nanofiber is the most challenging task developing the cooer matrix composites of high strength and electric conductivity. In this study, the unidirectional alignment of carbon nanofibers which is used reinforced material are controlled by drawing process and align mechanism as well as optimized drawing process parameter are verified via numerical analysis. The materials used in this study were pure copper and the nanofibers of 150nm in diameter and of 10∼20$\mu\textrm{m}$ in length. The materials have been tested and the tensile strength was 75MPa with the elongation of 44% for the copper. it is assumed that carbon nanofiber behave like porous elasto-plastic materials. Compaction test was conducted to obtain constitutive properties of carbon nanofiber Optimal parameter for drawing process was obtained by analytical and numerical analysis considering the various drawing angles, reduction areas, friction coefficient, etc. The lower drawing angles and lower reduction areas provides the less rupture of co tube is noticed during the drawing process and the better alignment of carbon nanofiber is obtained.

  • PDF