• Title/Summary/Keyword: Unidirectional composite

Search Result 237, Processing Time 0.021 seconds

Investigation Into the Drilling Characteristics of Carbon Fiber Reinforced Plastic (CFRP) with Variation of the Stacking Sequence Angle (탄소섬유강화플라스틱(CFRP)의 적층 배향각에 따른 드릴링 가공 특성 고찰)

  • Kim, Tae-Young;Kim, Ho-Seok;Shin, Hyung-Gon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.3
    • /
    • pp.250-258
    • /
    • 2014
  • Due to recent industrial growth and development, there has been a high demand for light and highly durable materials. Therefore, a variety of new materials has been developed. These new materials include carbon fiber reinforced plastic (CFRP or CRP), which is a wear-, fatigue-, heat-, and corrosion-resistant material. Because of its advantageous properties, CFRP is widely used in diverse fields including sporting goods, electronic parts, and medical supplies, as well as aerospace, automobile, and ship materials. However, this new material has several problems, such as delamination around the inlet and outlet holes at drilling, fiber separation, and tearing on the drilled surface. Moreover, drill chips having a fine particulate shape are harmful to the work environment and engineers' health. In fact, they deeply penetrate into machine tools, causing the reduction of lifespan and performance degradation. In this study, CFRP woven and unidirectional prepregs were formed at $45^{\circ}$ and $90^{\circ}$, respectively, in terms of orientation angle. Using a high-speed steel drill and a TiAIN-coated drill, the two materials were tested in three categories: cutting force with respect to RPM and feed speed; shape changes around the input and outlet holes; and the shape of drill chips.

Applications of Cure Monitoring Techniques by Using Fiber Optic Strain Sensors to Autoclave, FW and Rm Molding Methods

  • Fukuda, Takehito;Kosaka, Tatsuro;Osaka, Katsuhiko
    • Composites Research
    • /
    • v.14 no.6
    • /
    • pp.47-58
    • /
    • 2001
  • This paper describes applications of cure monitoring techniques by using embedded fiber optic strain sensors, which are extrinsic Fabry-Perot interoferometric (EFPI) and/or fiber Bra99 grating (FBG) sensors, to three kinds of molding methods of autoclave, FW and RTM molding methods. In these applications, internal strain of high-temperature curing resin was monitored by EFPI sensors. From theme experimental results, it was shown that strain caused by thermal shrink at cooling stage could be measured well. In addition, several specific matters to these molding methods were considered. As thor an autoclave molding of unidirectional FRP laminates, it was confirmed that off-axis strain of unidirectional FRP could be monitored by EFPI sensors. As for FW molding using room-temperature (RT) cured resin, it was found that the strain outputs from EFPI sensors represented curing shrinkage as well as thermal strain and the convergence meant finish of cure reaction. It was also shown that this curing shrinkage should be evaluated with consideration on logarithmic change in stiffness of matrix resin. As for a RTM melding, both EFPI and FBC sensors were employed to measure strain. The results showed that FBG sensors hale also good potential for strain monitoring at cooling stage, while the non-uniform thermal residual strain of textile affected the FBG spectrum after molding. This study has proven that embedded fiber optic strain sensors hale practical ability of cure monitoring of FRP. However, development of automatic installation methods of sensors remains as a problem to be solved for applications to practical products.

  • PDF

Study on Erosion of Carbon Fiber Reinforced Plastic Composite (탄소섬유강화복합재료의 마식에 관한 연구)

  • Kim, Am-Kee;Kim, Il-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.291-297
    • /
    • 2008
  • The solid particle erosion behaviour of unidirectional carbon fiber reinforced plastic (CFRP) composites was investigated. The erosive wear of these composites was evaluated at different impingement angles ($30^{\circ}$, $45^{\circ}$, $60^{\circ}$, $90^{\circ}$), different impact velocities (40, 55, 60, 70m/s) and at three different fiber orientations ($0^{\circ}$, $45^{\circ}$, $90^{\circ}$). The erodent was SiC sand with the size $50-100{\mu}m$ of irregula. shapes. The result showed ductile erosion behaviour with maximum erosion rate at $30^{\circ}$ impingement angle. The fiber orientations had a significant influence on erosion. The erosion rate was strongly dependent on impact velocity which followed power law $E{\propto}\;V^n$. Based on impact velocity (V), impact angle (${\alpha}$) and fiber orientation angle (${\beta}$), a method was proposed to predict the erosion rate of unidirectional fiber reinforced composites.

Fracture Study due to Various Core at Compact Tension Specimen Made of Carbon Fiber Reinforced Plastic (탄소성유강화플라스틱으로 만들어진 소형 인장 시험편에서 여러 종류의 심재에 따른 파손 연구)

  • Kim, Jae-Won;Cho, Jae-Ung
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.3
    • /
    • pp.589-596
    • /
    • 2018
  • Transportation or structure has the important role at clothing, food, and housing at modern society. If even the small crack happens and propagates at transportation or structure, the parts are fractured and they can cause a disaster. CT specimen was used in order to investigate the damage trend due to the crack propagation at this study to prevent this situation. As the material of CT specimen, the unidirectional carbon fiber reinforced plastic of the composite material in the limelight nowadays. The laminate angle designated in order of [60/-60/60/-60] was applied to the specimen model with the unidirectional fiber. As the analysis condition, the forced displacement was applied to the hole of upper part after fixing the hole of lower part. At the result of this study, the equivalent stress and shear stress was shown to be higher in order of the structural steel, copper, titanium and aluminum. This study result is thought to be utilized usefully at verifying the damage of CT specimen made of inhomogeneous material.

On Fiber Orientation Characterization of CERP Laminate Layups Using Ultrasonic Azimuthal Scanners

  • Im Kwang-Hee;Hsu, David K.;Sim Jae-Gi;Yang, In-Young;Song, Sung-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.6
    • /
    • pp.566-576
    • /
    • 2003
  • Carbon-fiber reinforced plastics (CFRP) composite laminates often possess strong in-plane elastic anisotropy attributable to the fiber orientation and layup sequence. The layup orientation thus greatly influences its properties in a composite laminate. It could result in the part being rejected or discarded if the layup orientation of a ply is misaligned. A nondestructive technique would be very beneficial, which could be used to test the part after curing and to require less time than the optical test. In this paper, ultrasonic scanners were set out for different measurement modalities for acquiring ultrasonic signals as a function of in-plane azimuthal angle. The motorized scanner was built first for making transmission measurements using a pair of normal-incidence shear wave transducers. Another scanner was then built fer the acousto-ultrasonic configuration using contact transducers. A ply-by-ply vector decomposition model has been developed, simplified, and implemented for composite laminates fabricated from unidirectional plies. We have compared the test results with model data. It is found that strong agreement are shown between tests and the model developed in characterizing cured layups of the laminates.

Effect of load on the wear and friction characteristics of a carbon fiber composites (탄소 섬유 복합재의 마찰 및 마모 특성에 미치는 하중 효과)

  • Koh, Sung-Wi;Yang, Byeong-Chun;Kim, Hyung-Jin;Kim, Jae-Dong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.4
    • /
    • pp.344-350
    • /
    • 2004
  • This is the study on dry sliding wear behavior of unidirectional carbon fiber reinforced epoxy matrix composite at ambient temperature. The wear rates and friction coefficients against the stainless steel counterpart specularly processed were experimentally determined and the resulting wear mechanisms were microscopically observed. Three principal sliding directions relative to the dominant fiber orientation in the composite wear selected. When sliding took place against smooth and hard counterpart, the highest were resistance and the lowest friction coefficient were observed in the antiparallel direction. When the velocity between the composite and the counterpart went up, the wear rate increased. The fiber destruction and cracking caused fiber bending on the contact surface, which was discovered to be dominant wear mechanism.

The Study of Nondestructive Test about Impact Damage of Plate Composite Materials (판형 복합재료의 충격 손상에 대한 비파괴시험적 고찰)

  • 나성엽;김재훈;최용규;류백능
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.4
    • /
    • pp.20-30
    • /
    • 2001
  • This study represents the Nondestructive Test about impact damage of composite materials made by different lay-up patterns and degrees. For this study, they were examined by the drop test on composite materials of two type lap-up patterns with fabric and unidirectional prepreg and examined nondestructive test of those. Nondestructive methods were X-ray test with $ZnI_2$ penetrant and Ultrasonic C-scan. The defect detectability of X-ray and Ultrasonic test was compared according to defect species. And the amounts of damage on impacted zone wert compared according to impact energy on two type test specimens. At results, Ultrasonic test was more effective to detect delamination and Penetrant X-ray test was more effective to detect matrix crack and fiber fracture. There were some differences in defect shapes and grades according to lay-up patterns and degrees, and the trend appeared that matrix crack, delamination, fiber fracture occured and increasing defects sizes according to increasing impact energy.

  • PDF

Effects of Reinforced Fibers on Energy Absorption Characteristics under Quasi-static Compressive Loading of Composite Circular Tubes (강화섬유에 따른 준정적 하중하에서 복합소재 원형튜브의 에너지 흡수특성 평가 연구)

  • Kim, Jung-Seok;Yoon, Huk-Jin;Lee, Ho-Sun;Choi, Kyung-Hoon
    • Composites Research
    • /
    • v.22 no.6
    • /
    • pp.32-38
    • /
    • 2009
  • In this study, the energy absorption capabilities and failure modes of four different kinds of circular tubes made of carbon, Kevlar and carbon-Kevlar hybrid composites with epoxy resin have been evaluated. In order to achieve these goals, these tubes were fabricated with unidirectional prepregs and compressive tests were conducted for the tubes under 10mm/min loading speed. From the test results, carbon/epoxy tubes were collapsed by brittle fracturing mode and showed the best energy absorption capabilities, while Kevlar/epoxy tubes were crushed by local buckling mode and worst. The hybrid [$90_C/0_K$] tubes were failed in a local bucking mode and showed good post crushing integrity, whereas [$90_K/0_C$] tubes were failed in a lamina bending mode and bad post crushing integrity.

Appraisal Study on Tensile Test Method of Mechanical Properties of FRP Composite Used in Strengthening RC Members (구조보강용 FRP 복합체의 역학적 특성치 분석을 위한 인장시험방법 평가 연구)

  • You, Young-Chan;Choi, Ki-Sun;Kang, In-Seok;Kim, Keung-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.73-80
    • /
    • 2008
  • Experimental study has been performed in order to construct the standard test methods and appraisal criteria by investigating the influence of specimen types(property, width, layers) and loading rate on the tensile characteristics of FRP used in strengthening RC structures. The FRP composite tested in this study are the unidirectional CFRP sheet/strip and the bidirectional GFRP sheet. Test variables consist of the various width ranging from 10mm to 25mm and number of CFRP sheets plied up to 5 layers. Test results indicated that maximum tensile strength and minimum coefficient of variation are recorded at each different width according to the fiber types and weaving directions. Also, the average tensile strengths of CFRP sheets are decreased as the number of layer of CFRP sheet are increased.

The Study on the Characteristics of Mode I Crack for Cross-ply Carbon/Epoxy Composite Laminates Based on Stress Fields (응력장을 이용한 직교적층 탄소섬유/에폭시 복합재 적층판의 모드 I 균열 특성 연구)

  • Kang, Min-Song;Jeon, Min-Hyeok;Kim, In-Gul;Woo, Kyeong-Sik
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.327-334
    • /
    • 2019
  • The delamination is a special mode of failure occurring in composite laminates. Several numerical studies with finite element analysis have been carried out on the delamination behavior of unidirectional composite laminates. On the other hand, the fracture for the multi-directional composite laminates may occur not only along the resin-fiber interface between plies known as interply or interlaminar fracture but also within a ply known as interyarn or intralaminar fracture accompanied by matrix cracking and fiber bridging. In addition, interlaminar and intralaminar cracks appear at irregular proportions and intralaminar cracks proceeded at arbitrary angle. The probabilistic analysis method for the prediction of crack growth behavior within a layer is more advantageous than the deterministic analysis method. In this paper, we analyze the crack path when the mode I load is applied to the cross-ply carbon/epoxy composite laminates and collect and analyze the probability data to be used as the basis of the probabilistic analysis in the future. Two criteria for the theoretical analysis of the crack growth direction were proposed by analyzing the stress field at the crack tip of orthotropic materials. Using the proposed method, the crack growth directions of the cross-ply carbon/epoxy laminates were analyzed qualitatively and quantitatively and compared with experimental results.