• Title/Summary/Keyword: Unidirectional composite

Search Result 237, Processing Time 0.028 seconds

Study on Abrasive Wear Behaviour of a Carbon Fiber Composites (탄소 섬유 강화 고분자 복합재의 연삭마모 특성에 관한 연구)

  • Koh, S.W.;Yang, B.C.;Kim, H.J.;Kim, J.D.
    • Journal of Power System Engineering
    • /
    • v.10 no.1
    • /
    • pp.46-51
    • /
    • 2006
  • Present study was investigated the effect of the particle of the counterface of unidirectional carbon fiber reinforced composite. The friction coefficient of composite and the specific wear rate different sliding velocity were measured for this materials. The friction track of counterface was observed by an optical microscope and scanning electron microscope. There were insignificant effects of the specific wear rate under lower Sic abrasive particle, however it showed high effect on $30{\mu}m$ abrasive particle size. There were significant effects of friction and wear behavior of the fiber direction under 0.3m/s sliding speed. Major failure mechanisms can be classified such as microfracture, plowing, microcutting, cutting and cracking.

  • PDF

Dynamic Characteristics of Rotating Composite Cantilever Beam with a Breathing Crack (Breathing Crack이 있는 회전하는 복합재료 보의 동적 특성에 관한 연구)

  • Kim, Sung-Soo;Kim, Ji-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.527-533
    • /
    • 2000
  • It is investigated that the characteristics of rotating cantilevered composite beam with a breathing crack. In the present study, the crack is modeled as a breathing crack which opens and closes with the motion of the unidirectional graphite-fiber reinforced polyimide beam. For the finite element analysis, the cracked element is modelled by the local flexibility matrix calculated on the basis of fracture mechanics using Castiligano theorem. Rotating beam is considered only transverse bending motion so that the element includes two degrees of freedom per node such as the transverse deflection and slope. The time history and frequency response function of the beam with a breathing crack are studied by Newmark direct time integration method and FFT(Fast Fourier Transform)simulation. Effects of various parameters such as the crack depths, crack locations, ply angles, volume fraction ratios, and rotating speeds of the beam are also studied. Numerical results indicate that it is more reliable to be modelled as a breathing crack than an open crack.

  • PDF

Numerical simulation of elastic-plastic stress concentration in fibrous composites

  • Polatov, Askhad M.
    • Coupled systems mechanics
    • /
    • v.2 no.3
    • /
    • pp.271-288
    • /
    • 2013
  • In the present study an elastic-plastic strain analysis is carried out for fibrous composites by using numerical modeling. Application of homogeneous transversely-isotropic model was chosen based on problem solution of a square plate with a circular hole under uniaxial tension. The results obtained in this study correspond to the solution of fiber model trial problem, as well as to analytical solution. Further, numerical algorithm and software has been developed, based on simplified theory of small elastic strains for transversely-isotropic bodies, and FEM. The influence of holes and cracks on stress state of complicated configuration transversely-isotropic bodies has been studied. Strain curves and plasticity zones that are formed in vicinity of the concentrators has been provided. Numerical values of effective mechanical parameters calculated for unidirectional composites at different ratios of fiber volume content and matrix. Content volume proportions of fibers and matrix defined for fibrous composite material that enables to behave as elastic-plastic body or as a brittle material. The influences of the fibrous structure on stress concentration in vicinity of holes on boron/aluminum D16, used as an example.

Laminate Tensile Failure Strength Prediction using Stress Failure Criteria

  • Lee, Myoung Keon;Kim, Jae Hoon
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.6
    • /
    • pp.19-25
    • /
    • 2021
  • This paper presents a method that uses the stress failure criteria to predict the tensile failure strength of open-hole laminates with stress concentrations. The composite material used in this study corresponds to a 177 ℃ cured, carbon/epoxy unidirectional tape prepreg. The results obtained by testing ten different laminates were compared and analyzed to verify the tensile strength of the open-hole laminates predicted using the proposed stress failure criteria. The findings of this study confirm that the tensile strength predictions performed using the proposed method are generally accurate, except in cases involving highly soft laminates (10% of 0° ply).

Experimental and microstructural evaluation on mechanical properties of sisal fibre reinforced bio-composites

  • Kumar, B. Ravi;Hariharan, S.S.
    • Steel and Composite Structures
    • /
    • v.33 no.2
    • /
    • pp.299-306
    • /
    • 2019
  • The natural fibre composites are termed as bio-composites. They have shown a promising replacement to the current carbon/glass fibre reinforced composites as environmental friendly materials in specific applications. Natural fibre reinforced composites are potential materials for various engineering applications in automobile, railways, building and Aerospace industry. The natural fibre selected to fabricate the composite material is plant-based fibre e.g., sisal fibre. Sisal fibre is a suitable reinforcement for use in composites on account of its low density, high specific strength, and high hardness. Epoxy is a thermosetting polymer which is used as a resin in natural fibre reinforced composites. Hand lay-up technique was used to fabricate the composites by reinforcing sisal fibres into the epoxy matrix. Composites were prepared with the unidirectional alignment of sisal fibres. Test specimens with different fibre orientations were prepared. The fabricated composites were tested for mechanical properties. Impact test, tensile test, flexural test, hardness test, compression test, and thermal test of composites had been conducted to assess its suitability in industrial applications. Scanning electron microscopy (SEM) test revealed the microstructural information of the fractured surface of composites.

Strength of Unidirectional and Fabric Hybrid Laminate Joints (일방향-평직 복합재 혼합 적층판의 체결부 강도 연구)

  • An,Hyeon-Su;Sin,So-Yeong;Gwon,Jin-Hui;Choe,Jin-Ho;Lee,Sang-Gwan;Yang,Seung-Un
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.25-33
    • /
    • 2003
  • The failure load and mode of the unidirectional and fabric hybrid composite laminate joints are studied by test and finite element analysis. Test is conducted for the specimens with nine various geometries under pin loading. Finite element analysis is performed considering the contact and friction effects between the pin and laminate by MSC/NASTRAN. Failure is estimated by Tsai-Wu and Yamada-Sun criteria on the characteristic curve. While the failure of the specimens with the small width and edge length are much affected by the joint geometry, the geometry effects are negligible in the specimens with large width and edge length. Finite element analysis based on the characteristic length method reasonably predicts the failure load and mode of the joints.

Surface Fracture Behaviors of Unidirectional and Cross Ply Glass Fiber/Epoxy Lamina-Coated Glass Plates under a Small-Diameter Steel Ball Impact (일방향 및 직교형 유리섬유/에폭시 복합재로 피막된 판유리의 미소강구 충격에 의한 표면파괴거동)

  • Chang, Jae-Young;Choi, Nak-Sam
    • Composites Research
    • /
    • v.22 no.4
    • /
    • pp.33-40
    • /
    • 2009
  • Fiber orientation effects on the impact surface fracture of the glass plates coated with the glass fiber/epoxy lamina layer were investigated using a small-diameter steel-ball impact experiment. Four kinds of materials were used: soda-lime glass plates, unidirectional glass fiber/epoxy layer(one ply, two plies)-coated, crossed glass tiber/epoxy layer (two plies)-coated glass plates. The maximum stress and absorbed fracture energy were measured on the back surface of glass plates during the impact. With increasing impact velocity, various surface cracks such as ring, cone, radial and lateral cracks appeared near the impacted site of glass plates. Cracks in the plate drastically diminished by glass fiber coating. The tiber orientation guided the directions of delamination and plastic deformation zones between the tiber layer and the glass plate. Impact surface-fracture indices expressed in terms of the maximum stress and absorbed energy could be used as an effective evaluation parameter of the surface resistance.

The Group Velocity of Lamb Wave Generated by the one Source in Unidirectional Laminated Composite Plates (일방향 적층 복합재료 판에서 한 음원에서 발생된 램파의 군속도)

  • Lee Jeong-Ki;Rhee Sang-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.107-112
    • /
    • 2006
  • The elastic waves in a plate are dispersive waves due to the characteristics of Lamb waves. However, S0 symmetric mode is less dispersive in the frequency region below the first cut-off frequency. The wave Propagation velocities vary with the direction in anisotropic plates such as Carbon Fiber Reinforced Plastic (CFRP) Plates. The wave vector direction and energy flow vector direction are same in isotropic plates. However, the wave vector direction same as the phase velocity direction is not in accordance with the energy flow direction same as the group velocity direction in anisotropic plates. In this study. the dispersion curves or the phase velocity from anti-symmetric and symmetric Lamb wave dispersion equation are calculated for unidirectional laminated composite plate. Slowness surface is sketched using phase velocity under the first cut-off frequency. The direction and magnitude of group velocity are corrected with this slowness surface. The measured group velocities are in good agreement with the corrected group velocity curve except near the fiber direction zone which is called the cusp region.

Nonlocal Peridynamic Models for Dynamic Brittle Fracture in Fiber-Reinforced Composites: Study on Asymmetrically Loading State (섬유강화 복합재의 동적 취성 파괴현상 규명을 위한 비국부 페리다이나믹스 해석법 개발: 비대칭 하중 연구)

  • Ha, Youn Doh;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.4
    • /
    • pp.279-285
    • /
    • 2012
  • In this paper a computational method for a homogenized peridynamics description of unidirectional fiber-reinforced composites is presented. For these materials, dynamic brittle fracture and damage are simulated with the proposed peridynamic model. Compared with observations from dynamic experiments by Coker et al.(2001), the peridynamic computational model can reproduce various characteristics of dynamic fracture and supersonic or intersonic crack growth in asymmetrically loaded unidirectional fiber-reinforced composite plates. Also we analyze the same model in the symmetric loading condition and figure out that the asymmetric loading leads to a much higher propagation speed. Consistent results have been reported in the experiments.

Inverse Estimation and Verification of Parameters for Improving Reliability of Impact Analysis of CFRP Composite Based on Artificial Neural Networks (인공신경망 기반 CFRP 복합재료 충돌 해석의 신뢰성 향상을 위한 파라미터 역추정 및 검증)

  • Ji-Ye Bak;Jeong Kim
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.59-67
    • /
    • 2023
  • Damage caused by impact on a vehicle composed of CFRP(carbon fiber reinforced plastic) composite to reduce weight in the aerospace industries is related to the safety of passengers. Therefore, it is important to understand the damage behavior of materials that is invisible in impact situations, and research through the FEM(finite element model) is needed to simulate this. In this study, FEM suitable for predicting damage behavior was constructed for impact analysis of unidirectional laminated composite. The calibration parameters of the MAT_54 Enhanced Composite Damage material model in LS-DYNA were acquired by inverse estimation through ANN(artificial neural network) model. The reliability was verified by comparing the result of experiment with the results of the ANN model for the obtained parameter. It was confirmed that accuracy of FEM can be improved through optimization of calibration parameters.