• Title/Summary/Keyword: Unidirectional Ply

Search Result 45, Processing Time 0.017 seconds

Dynamic Characteristics of CFRP Structure Member According to Change the Stacking Angle and Shape (적층각 및 형상 변화에 따른 CFRP 구조부재의 동적 특성)

  • Yeo, In-Goo;Choi, Ju-Ho;Yang, In-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.388-393
    • /
    • 2013
  • Carbon fiber reinforced plastic (CFRP) has many desirable qualities, including being lightweight and very strong. These characteristics have led to its use in applications ranging from small consumer products to vehicles. Circular and square CFRP members were fabricated using 8ply unidirectional prepreg sheets stacked at different angles ($[+15^{\circ}/-15^{\circ}]_4$, $[+45^{\circ}/-45^{\circ}]_4$ and $[90]_8$, where $0^{\circ}$ coincides with the axis of the member). Based on the collapse characteristics of a CFRP circular member, the collapse characteristics and energy absorption capability were analyzed. Impact collapse tests were carried out for each section member. In this study, the impact energies at crossheads speeds of 5.52 m/s, 5.14 m/s and 4.57 m/s were 611.52 J, 529.2 J and 419.44 J (circular member) 2.16 m/s, 1.85 m/s and 1.67 m/s are 372.4 J, 274.4 J and 223.44 J (square member). The purpose is to experimentally examine the absorption behavior and evaluation the strength in relation to changes in the stacking configuration when the CFRP circular members with different stacking configurations were exposed to various impact velocities. In addition, the dynamic characteristics were considered.

Impact Characteristics of CFRP Structural Member according to the Variation of Stacking Condition and Impact Energy (적층구성과 충돌에너지의 변화에 따른 CFRP 구조부재의 충격특성)

  • Yeo, In-Goo;Choi, Ju-Ho;Choi, Yeong-Min;Yang, Yong-Jun;Hwang, Woo-Chae;Yang, In-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.6
    • /
    • pp.976-981
    • /
    • 2013
  • This aims to examine experimentally the absorption behavior and strength of circular CFRP members with different stacking configurations on exposure to a separate impact velocity. In addition, considered the dynamic characteristics. Circular and square CFRP members were prepared from 8-ply unidirectional prepreg sheets stacked at different angles ($0^{\circ}/90^{\circ}$ and $90^{\circ}/0^{\circ}$, where the $0^{\circ}$ direction coincides with the axis of the member) and interface numbers (2, 4, and 6). Based on the collapse characteristics of the circular CFRP members. In this study, for the circular members, the impact energies at crosshead speeds of 5.52 m/s, 5.14 m/s, and 4.57 m/s are 611.52 J, 529.2 J, and 419.44 J (at circular members), respectively. Likewise, for the square members, the impact energies at crosshead speeds of 2.16 m/s, 1.85 m/s, and 1.67 m/s are 372.4 J, 274.4 J, and 223.44 J (at square members).

Appraisal Study on Tensile Test Method of Mechanical Properties of FRP Composite Used in Strengthening RC Members (구조보강용 FRP 복합체의 역학적 특성치 분석을 위한 인장시험방법 평가 연구)

  • You, Young-Chan;Choi, Ki-Sun;Kang, In-Seok;Kim, Keung-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.73-80
    • /
    • 2008
  • Experimental study has been performed in order to construct the standard test methods and appraisal criteria by investigating the influence of specimen types(property, width, layers) and loading rate on the tensile characteristics of FRP used in strengthening RC structures. The FRP composite tested in this study are the unidirectional CFRP sheet/strip and the bidirectional GFRP sheet. Test variables consist of the various width ranging from 10mm to 25mm and number of CFRP sheets plied up to 5 layers. Test results indicated that maximum tensile strength and minimum coefficient of variation are recorded at each different width according to the fiber types and weaving directions. Also, the average tensile strengths of CFRP sheets are decreased as the number of layer of CFRP sheet are increased.

A Study on Mode 1 and Mode 2 Interlaminar Fracture Toughness of Carbon Fiber Reinforced Plastics (탄소섬유 복합재료의 모드1 및 모드 2 층간파괴인성치에 관한 연구)

  • Kim, Jae-Dong;Koh, Sung-Wi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.3
    • /
    • pp.272-278
    • /
    • 1995
  • In this paper to investigate mode I and mode II critical energy release rates, G sub(IC) and G sub(IIC), three prepregs which are domestic products are used. Those are used for the unidirectional composites, but only one is used for the cross-ply laminate composites which is molded [0/90] sub(6s), [0/45] sub(6s) and [0/45/90] sub(6s). The value of G sub(IC) is almost same when modified three calculating methods are applied. The highest value of G sub(IC) at crack initiation is obtained at the [0/90] sub(6s) interlaminar and the lowest one is at the [0/45/90] sub(6s) interlaminar.

  • PDF

Experimental Assessment of Tensile Failure Characteristic for Advanced Composite Laminates (첨단복합재료 적층판의 인장 파손특성 시험적 평가)

  • Lee, Myoung Keon;Lee, Jeong Won;Yoon, Dong Hyun;Kim, Jae Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.10
    • /
    • pp.959-965
    • /
    • 2017
  • In recent years, major airplane manufacturers have been using the laminate failure theory to estimate the strain of composite structures for airplanes. The laminate failure theory uses the failure strain of the laminate to analyze composite structures. This paper describes a procedure for the experimental assessment of laminate tensile failure characteristics. Regression analysis was used as the experimental assessment method. The regression analysis was performed with the response variable being the laminate failure strain and with the regressor variables being two-ply orientation ($0^{\circ}$ and ${\pm}45^{\circ}$) variables. The composite material in this study is a carbon/epoxy unidirectional (UD) tape that was cured as a pre-preg at $177^{\circ}C(350^{\circ}F)$. A total of 149 tension tests were conducted on specimens from 14 distinct laminates that were laid up at standard angle layers ($0^{\circ}$, $45^{\circ}$, $-45^{\circ}$, and $90^{\circ}$). The ASTM-D-3039 standard was used as the test method.