• Title/Summary/Keyword: Unicast Routing

Search Result 44, Processing Time 0.024 seconds

An Improved Distributed Algorithm for Delay-Constrained Unicast Routing (개선된 분산 Delay-Constrained Unicast Routing 알고리듬)

  • Zhou, Xiao-Zheng;Suh, Hee-Jong
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.109-112
    • /
    • 2005
  • In this paper, we propose an improved delay-constrained unicast routing (I-DCUR) algorithm for real-time networks which is based on the delay-constrained unicast routing (DCUR) algorithm. Our I-DCUR algorithm is quite different from DCUR algorithm, because the node will choose the link between the active node and the previous node, and it will replace the original loop path when it detects a loop. Thus, firstly consider to choose the link between the active node and the previous node to replace the original loop path when a node detects a loop. So our algorithm can make the construction of path more efficiently, as compared to DCUR algorithm. We could see that the performance of I-DCUR algorithm is much better than DCUR algorithm in the experimental results. There were over 40% improvement in 100 nodes, 60% in 200 nodes, and 9% reduction of costs.

  • PDF

The Performance Comparison of the Unicast Routing Protocol and the Broadcast Routing Protocol in the Small-sized Ad hoc Network (소규모 애드혹 네트워크에서의 유니캐스트와 브로드캐스트 라우팅 프로토콜의 성능비교)

  • Kim, Dong-Hee;Park, Jun-Hee;Moon, Kyeong-Deok;Lim, Kyung-Shik
    • The KIPS Transactions:PartC
    • /
    • v.13C no.6 s.109
    • /
    • pp.685-690
    • /
    • 2006
  • This paper compares the performance of the unicast routing protocol and the broadcast routing protocol in a small-sized wireless multi-hop network, such as home network. Normally, ad-hoc routing protocols are designed for general wireless multi-hop networks, not being said to be optimized for the small-sized ad hoc network. This paper compares some unicast routing protocols and optimal broadcast routing protocol, and shows the result. The result of the simulation says the broadcast routing protocol shows better performance than the ad-hoc routing protocols in the small-sired wireless multi-hop network. Especially, the result shows that the broadcast protocol has higher packet delivery ratio and lower packet latency than unicast routing protocols

A Study on The Efficient Multicast Algorithm of Wormhole Routing Method in Multistage Networks (다단계 네트워크에서 웜홀 라우팅 방식의 효율적인 멀티캐스트 알고리즘 연구)

  • 김소은;김창수;최계현
    • Journal of Korea Multimedia Society
    • /
    • v.2 no.2
    • /
    • pp.184-194
    • /
    • 1999
  • We present a new algorithm to minimize channel contention while sending multiple messages from multiple source to overlapped destination set on Multistage Interconnection Network (MIN) which supports wormhole routed turnaround routing. The multicast tree of the U-MIN(Unicast MIN) algorithm is useful in performing messages from one source to multiple destination but gives rise to a serious channel connection in performing multiple multicast because it has been designed for only single multicast. For multiple multicast communication on MIN, we address how to implement multiple multicast services efficiently. And a SPU-MIN(Source Partitioned Unicast MIN) algorithm is proposed and shown to be superior than the U-MIN algorithm for multiple multicast. The turnaround routing algorithm based on wormhole routing technique is employed as a message sending method.

  • PDF

An Improved Algorithm of Distributed QoS in Real-time Networks (실시간 네트워크에서 개선된 분산 QoS 알고리듬)

  • Suh, Hee-Jong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.1
    • /
    • pp.53-60
    • /
    • 2012
  • In this paper, an improved algorithm of distributed QoS is proposed for real-time networks. This algorithm like a delay-constrained unicast routing(DCUR) algorithm uses either least-cost(LC) path or least-delay(LD) path of an active node, but when there is a loop, this algorithm is quite different from DCUR in choosing the link between the active node and the previous node to replace the original loop path. And this algorithm makes the construction of the paths more efficiently.

Performance Analysis of GeoRouting Protocol in Vehicle Communication Environment (차량 통신 환경에서GeoRouting 프로토콜 성능 분석)

  • An, Sung-Chan;Lee, Joo-Young;Jung, Jae-Il
    • Journal of IKEEE
    • /
    • v.18 no.3
    • /
    • pp.427-434
    • /
    • 2014
  • The Multihop Routing of vehicle communication environment is difficult to maintain due to heavy fluctuation of network topology and routing channel according to the movement of the vehicle, road property, vehicle distribution. We implemented GeoNetworking on the basis of ETSI(European Telecommunication Standard Institute) to maintain the vehicle safety service. GeoNetworking has its own way that delivers the data through the Unicast and Broadcast. In this paper, we compared performance index such as packet delivery ratio, end-to-end delay about GeoNetworking using the QualNet Network Simulator. Previous research assessed performance of GeoUnicast. This research has been additionally performed about GeoBroadcast, and we progressed algorithm performance through the comparison of CBF(Contention based Forwarding) of GeoUnicast with Greedy forwarding of GeoBroadcast.

An Efficient Distributed Delay-Constrained Unicast Routing Algorithm (지연시간을 고려한 효율적인 분산 유니캐스트 라우팅 알고리즘)

  • Shin, Min-Woo;Lim, Hyeong-Seok
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.4
    • /
    • pp.397-404
    • /
    • 2002
  • We propose a heuristic distributed unicast routing algorithm for minimizing the total cost of the path in a point to point network with do]ay constraint. The algorithm maintains a delay vector and a cost vector about the network states and finds the path using this information. In this paper, we show that our algorithm always finds a delay-constrained path if such a path exists and has O(│E│) message complexity(│E│is the number of links in the network). Also, simulation results show that the proposed algorithm has better cost performance than other delay-constrained routing algorithms.

Virtual Source and Flooding-Based QoS Unicast and Multicast Routing in the Next Generation Optical Internet based on IP/DWDM Technology (IP/DWDM 기반 차세대 광 인터넷 망에서 가상 소스와 플러딩에 기초한 QoS 제공 유니캐스트 및 멀티캐스트 라우팅 방법 연구)

  • Kim, Sung-Un;Park, Seon-Yeong
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.1
    • /
    • pp.33-43
    • /
    • 2011
  • Routing technologies considering QoS-based hypermedia services have been seen as a crucial network property in next generation optical Internet (NGOI) networks based on IP/dense-wavelength division multiplexing (DWDM). The huge potential capacity of one single fiber. which is in Tb/s range, can be exploited by applying DWDM technology which transfers multiple data streams (classified and aggregated IP traffics) on multiple wavelengths (classified with QoS-based) simultaneously. So, DWDM-based optical networks have been a favorable approach for the next generation optical backbone networks. Finding a qualified path meeting the multiple constraints is a multi-constraint optimization problem, which has been proven to be NP-complete and cannot be solved by a simple algorithm. The majority of previous works in DWDM networks has viewed heuristic QoS routing algorithms (as an extension of the current Internet routing paradigm) which are very complex and cause the operational and implementation overheads. This aspect will be more pronounced when the network is unstable or when the size of network is large. In this paper, we propose a flooding-based unicast and multicast QoS routing methodologies(YS-QUR and YS-QMR) which incur much lower message overhead yet yields a good connection establishment success rate. The simulation results demonstrate that the YS-QUR and YS-QMR algorithms are superior to the previous routing algorithms.

Performance Evaluation for a Unicast Vehicular Delay Tolerant Routing Protocol Networks

  • Abdalla, Ahmed Mohamed
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.167-174
    • /
    • 2022
  • Vehicular Ad hoc Networks are considered as special kind of Mobile Ad Hoc Networks. VANETs are a new emerging recently developed, advanced technology that allows a wide set of applications related to providing more safety on roads, more convenience for passengers, self-driven vehicles, and intelligent transportation systems (ITS). Delay Tolerant Networks (DTN) are networks that allow communication in the event of connection problems, such as delays, intermittent connections, high error rates, and so on. Moreover, these are used in areas that may not have end-to-end connectivity. The expansion from DTN to VANET resulted in Vehicle Delay Tolerant Networks (VDTN). In this approach, a vehicle stores and carries a message in its buffer, and when the opportunity arises, it forwards the message to another node. Carry-store-forward mechanisms, packets in VDTNs can be delivered to the destination without clear connection between the transmitter and the receiver. The primary goals of routing protocols in VDTNs is to maximize the probability of delivery ratio to the destination node, while minimizing the total end-to-end delay. DTNs are used in a variety of operating environments, including those that are subject to failures and interruptions, and those with high delay, such as vehicle ad hoc networks (VANETs). This paper discusses DTN routing protocols belonging to unicast delay tolerant position based. The comparison was implemented using the NS2 simulator. Simulation of the three DTN routing protocols GeOpps, GeoSpray, and MaxProp is recorded, and the results are presented.

On Optimizing Route Discovery of Topology-based On-demand Routing Protocols for Ad Hoc Networks

  • Seet, Boon-Chong;Lee, Bu-Sung;Lau, Chiew-Tong
    • Journal of Communications and Networks
    • /
    • v.5 no.3
    • /
    • pp.266-274
    • /
    • 2003
  • One of the major issues in current on-demand routing protocols for ad hoc networks is the high resource consumed by route discovery traffic. In these protocols, flooding is typically used by the source to broadcast a route request (RREQ) packet in search of a route to the destination. Such network-wide flooding potentially disturbs many nodes unnecessarily by querying more nodes than is actually necessary, leading to rapid exhaustion of valuable network resources such as wireless bandwidth and battery power. In this paper, a simple optimization technique for efficient route discovery is proposed. The technique proposed herein is location-based and can be used in conjunction with the existing Location-Aided Routing (LAR) scheme to further reduce the route discovery overhead. A unique feature of our technique not found in LAR and most other protocols is the selective use of unicast instead of broadcast for route request/query transmission made possible by a novel reuse of routing and location information. We refer to this new optimization as the UNIQUE (UNIcast QUEry) technique. This paper studies the efficacy of UNIQUE by applying it to the route discovery of the Dynamic Source Routing (DSR) protocol. In addition, a comparative study is made with a DSR protocol optimized with only LAR. The results show that UNIQUE could further reduce the overall routing overhead by as much as 58% under highly mobile conditions. With less congestion caused by routing traffic, the data packet delivery performance also improves in terms of end-to-end delay and the number of data packets successfully delivered to their destinations.

Mobility-Aware Ad Hoc Routing Protocols for Networking Mobile Robot Teams

  • Das, Saumitra M.;Hu, Y. Charlie;Lee, C.S. George;Lu, Yung-Hsiang
    • Journal of Communications and Networks
    • /
    • v.9 no.3
    • /
    • pp.296-311
    • /
    • 2007
  • Mobile multi-robot teams are useful in many critical applications such as search and rescue. Explicit communication among robots in such mobile multi-robot teams is useful for the coordination of such teams as well as exchanging data. Since many applications for mobile robots involve scenarios in which communication infrastructure may be damaged or unavailable, mobile robot teams frequently need to communicate with each other via ad hoc networking. In such scenarios, low-overhead and energy-efficient routing protocols for delivering messages among robots are a key requirement. Two important primitives for communication are essential for enabling a wide variety of mobile robot applications. First, unicast communication (between two robots) needs to be provided to enable coordination and data exchange. Second, in many applications, group communication is required for flexible control, organization, and management of the mobile robots. Multicast provides a bandwidth-efficient communication method between a source and a group of robots. In this paper, we first propose and evaluate two unicast routing protocols tailored for use in ad hoc networks formed by mobile multi-robot teams: Mobile robot distance vector (MRDV) and mobile robot source routing (MRSR). Both protocols exploit the unique mobility characteristics of mobile robot networks to perform efficient routing. Our simulation study show that both MRDV and MRSR incur lower overhead while operating in mobile robot networks when compared to traditional mobile ad hoc network routing protocols such as DSR and AODV. We then propose and evaluate an efficient multicast protocol mobile robot mesh multicast (MRMM) for deployment in mobile robot networks. MRMM exploits the fact that mobile robots know what velocity they are instructed to move at and for what distance in building a long lifetime sparse mesh for group communication that is more efficient. Our results show that MRMM provides an efficient group communication mechanism that can potentially be used in many mobile robot application scenarios.