• Title/Summary/Keyword: Uniaxial stress

Search Result 571, Processing Time 0.028 seconds

A study on the improvement of the local stress field using the theory of conjugate approximations and loubignac's iterative method (공액근사개념과 Loubignac의 반복계산법을 이용한 국부응력장 개선에 대한 연구)

  • Song, Kee-Nam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1598-1608
    • /
    • 1997
  • Based on the application of te theory of conjugate approximations and the Loubignac's iterative method in a local region, a method to improve the stress filed in a displacement-formulated finite element solution has been proposed. The validity of the proposed method has been tested through two examples : a thick cylinder under internal pressure loading and an infinite plate with a central circular hole subjected to uniaxial tension. As a result of analysis of the examples, it was found that the stress field obtained for the local region model by the proposed method approximates well for the whole domain model. In addition, it was found that because of a significant decrease in the computing time to obtain the improved stress field, the proposed method is efficient and useful for the detailed stress analysis in local regions.

Deformation behaviours of SS304 tubes in pulsating hydroforming processes

  • Yang, Lianfa;Wang, Ninghua;He, Yulin
    • Structural Engineering and Mechanics
    • /
    • v.60 no.1
    • /
    • pp.91-110
    • /
    • 2016
  • Tube hydroforming (THF) under pulsating hydraulic pressures is a novel technique that applies pulsating hydraulic pressures that are periodically increased to deform tubular materials. The deformation behaviours of tubes in pulsating THF may differ compared to those in conventional non-pulsating THF due to the pulsating hydraulic pressures. The equivalent stress-strain relationship of metal materials is an ideal way to describe the deformation behaviours of the materials in plastic deformation. In this paper, the equivalent stress-strain relationships of SS304 tubes in pulsating hydroforming are determined based on experiments and simulation of free hydraulic bulging (FHB), and compared with those of SS304 tubes in non-pulsating THF and uniaxial tensile tests (UTT). The effect of the pulsation parameters, including amplitude and frequency, on the equivalent stress-strain relationships is investigated to reveal the plastic deformation behaviours of tubes in pulsating hydroforming. The results show that the deformation behaviours of tubes in pulsating hydroforming can be well described by the equivalent stress-stain relationship obtained by the proposed method. The amplitude and frequency of pulsating hydraulic pressure have distinct effects on the equivalent stress-strain relationships-the equivalent stress becomes augmented and the formability is enhanced with the increase of the pulsation amplitude and frequency.

Stress based Fatigue Life Prediction for Ball Bearing (볼 베어링의 응력 기반 접촉피로수명 예측)

  • Kim, Tae-Wan;Cho, Yong-Joo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.5
    • /
    • pp.44-55
    • /
    • 2007
  • The method for fatigue life prediction of ball bearing is proposed applying the algorithm of contact fatigue prediction based on stress analysis. In order to do this, a series of simulation such as initial surface stress analysis, EHL analysis, subsurface stress analysis and fatigue analysis are conducted from the loading at each ball location calculated for a bearing subjected to external bearing load and contact shape function. And uniaxial fatigue tests are performed to obtain fatigue parameter of AISI 52100 steel. It was found that since stress is usually higher at the inner raceway contact than at the outer raceway contact, fatigue failure occurs on the inner raceway first. When the fatigue life calculated in the stress-based method are compared with L50 life of L-P model, Crossland criterion for the radial load increment is similar to L50 life and Dang Van criterion for the axial load increment is similar. In the case of EHL contact, there is no difference of fatigue life between dry contact and EHL contact, when maximum Hertz pressure exceeds 2.5GPa.

Development of Rock Stress Measurement Probe Based on The Pilot Hole Wall Deformation Method (Pilot 공벽변형법에 의한 암반응력 측정 장비의 개발)

  • Lee, Ki-Ha;Ishijima, Yoji;Koo, Ho-Bon;Kim, Seung-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.1125-1132
    • /
    • 2009
  • The theory and a probe of the pilot hole wall deformation method, which is a 3-dimensional stress measurement method based on the stress relief principle, were developed. A pilot hole is drilled from the bottom of a borehole and the stress measurement probe is inserted into the pilot hole. The borehole is advanced as the overcoring and the changes in the radius of the pilot hole in three directions and in the axial lengths between the borehole bottom and the pilot hole wall along four axial lines are measured by cantilever type-displacement sensors. The differences between the displacements by the elastic stress analysis and those measured by using the probe were within 3% in the uniaxial compression test of an acrylic resin plate having a hole.

  • PDF

Elastic Analysis of a Cracked Ellipsoidal Inhomogeneity in an Infinite Body

  • Cho, Young-Tae
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.709-719
    • /
    • 2001
  • In particle or short-fiber reinforced composites, cracking of reinforcements is a significant damage mode because the cracked reinforcements lose carrying capacity. This paper deals with elastic stress distributions and load carrying capacity of intact and cracked ellipsoidal inhomogeneities. Three dimensional finite element analysis has been carried out on intact and cracked ellipsoidal inhomogeneities in an infinite body under uniaxial tension and pure shear. For the intact inhomogeneity, as well known as Eshelbys solution, the stress distribution is uniform in the inhomogeneity and nonuniform in the surrounding matrix. On the other hand, for the cracked inhomogeneity, the stress in the region near the crack surface is considerably released and the stress distribution becomes more complex. The average stress in the inhomogeneity represents its load carrying capacity, and the difference between the average stresses of the intact and cracked inhomogeneities indicates the loss of load carrying capacity due to cracking damage. The load carrying capacity of the cracked inhomogeneity is expressed in to cracking damage. The load carrying capacity of the cracked inhomogeneity is expressed in terms of the average stress of the intact inhomogeneity and some coefficients. It is found that a cracked inhomogeneity with high aspect ratio still maintains higher load carrying capacity.

  • PDF

Effect of confining stress on representative elementary volume of jointed rock masses

  • Wu, Na;Liang, Zhengzhao;Li, Yingchun;Qian, Xikun;Gong, Bin
    • Geomechanics and Engineering
    • /
    • v.18 no.6
    • /
    • pp.627-638
    • /
    • 2019
  • Estimation of representative elementary volume (REV) of jointed rock masses is critical to predict the mechanical behavior of field-scale rock masses. The REV of jointed rock masses at site is strongly influenced by stress state. The paper proposed a method to systematically studied the influence of confining stress on the REV of jointed rock masses with various strengths (weak, medium and strong), which were sourced from the water inlet slope of Xiaowan Hydropower Station, China. A finite element method considering material heterogeneity was employed, a series of two-dimensional (2D) models was established based on the Monte-Carlo method and a lot of biaxial compressive tests were conducted. Numerical results showed that the REV of jointed rock masses presented a step-like reduction as the normalized confining stress increased. Confining stress weakened the size effect of jointed rock masses, indicating that the REV determined under uniaxial compression test can be reasonably taken as the REV of jointed rock masses under complexed in-situ stress environment.

A Proposal of Stress-Strain Relations Model for Recycled-PET Polymer Concrete under Uniaxial Stress (일축 하중을 받는 PET 재활용 폴리머콘크리트의 응력-변형률 모델의 제안)

  • Jo Byung-Wan;Moon Rin-Gon;Park Seung-Kook
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.767-776
    • /
    • 2004
  • Polymer concrete shows excellent mechanical properties and chemical resistance compared with conventional normal cement concrete. The polymer concrete is drawing a strong interest as high-performance materials in the construction industry. Resins using recycled PET offer the possibility of a lower source cost of materials for making useful polymer concrete products. Also the recycling of PET in polymer concrete would help solve some of the solid waste problems posed by plastics and save energy. The purposed of this paper is to propose the model for the stress-strain relation of recycled-PET polymer concrete at monotonic uniaxial compression and is to investigate for the stress-strain behavior characteristics of recycled-PET polymer concrete with different variables(strength, resin contents, curing conditions, addition of silane and ages). The maximum stress and strain of recycled-PET polymer concrete was found to increase with an increase in resin content, however, it decreased beyond a particular level of resin content. A ascending and descending branch of stress-strain curve represented more sharply at high temperature curing more than normal temperature curing. Addition of silane increases compressive strength and postpeak ductility. In addition, results show that the proposed model accurately predicts the stress-strain relation of recycled-PET polymer concrete

CAVITY FORMATION IN INTERFACE BETWEEN POWER LAW CREEP PARTICLE AND ELASTIC MATRIX SUBJECTED TO A UNIAXIAL STRESS

  • Lee, Yong-Sun;Ha, Young-Min;Hwang, Su-Chul
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.1 no.1
    • /
    • pp.69-88
    • /
    • 1995
  • The paper attempts to estimate the incubation time of a cavity in the interface between a power law creep particle and an elastic matrix subjected to a uniaxial stress. Since the power law creep particle is time dependent, the stresses in the interface relax. Through previous stress analysis related to the present physical model, the relaxation time is defined by ${\alpha}$2 which satisfies the equation $\Gamma$0 |1+${\alpha}$2k|m=1-${\alpha}$2 [19]. $\Gamma$0=2(1/√3)1+m($\sigma$$\infty$/2${\mu}$)m($\sigma$0/$\sigma$$\infty$tm) where $\sigma$$\infty$ is an applied stress, ${\mu}$ is a shear modulus of a matrix, $\sigma$$\infty$ is a material constant of a power law particle, $\sigma$=$\sigma$0 $\varepsilon$ and t elapsed time. the volume free energy associated with Helmholtz free energy includes strain energies associated with Helmholtz free energy includes strain energies caused by applied stress anddislocations piled up in interface (DPI). The energy due to DPI is found by modifying the results of Dundurs and Mura[20]. The volume free energies caused by both applied stress and DPI are a function of the cavity size(${\gamma}$) and elapsed time(t) and arise from stress relaxation in the interface. Critical radius ${\gamma}$ and incubation time t to maximize Helmholtz free energy is found in present analysis. Also, kinetics of cavity fourmation are investigated using the results obtained by Riede[16]. The incubation time is defied in the analysis as the time required to satisfy both the thermodynamic and kinetic conditions. Through the analysis it is found that [1] strain energy caused by the applied stress does not contribute significantly to the thermodynamic and kinetic conditions of a cavity formation, 2) in order to satisfy both thermodynamic and kinetic conditions, critical radius ${\gamma}$ decreases or holds constant with increase of time until the kinetic condition(eq.40) is satisfied. Therefore the cavity may not grow right after it is formed, as postulated by Harris[11], and Ishida and Mclean[12], 3) the effects of strain rate exponent (m), material constant $\sigma$0, volume fraction of the particle to matrix(f) and particle size on the incubation time are estimated using material constants of the copper as matrix.

Mechanical Properties of Aluminium Alloy with Cellular Structure. (미세기공 알루미늄 소재의 기계적 성질)

  • 윤성원;이승후;강충길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.695-698
    • /
    • 2002
  • Induction heating process is one of the most efficient heating process in terms of temperature control accuracy and heating time saving. In the past study, fabrication process of cellular 6061 alloys by powder metallurgical route and induction heating process was studied. To supplement the framing conditions that studied in past study, effect of induction heating capacity and holding time at foaming temperature were investigated. Under the achieved framing conditions, teamed 6061 alloys were fabricated for variation of foaming temperature, and porosities(%)-foaming temperature curves were obtained by try-error experimental method. Uniaxial compression tests were performed to investigate the relationship between porosities(%) and stress-strain curves of framed 6061 alloy. Also, energy absorption capacity and efficiency were calculated from stress-strain curves to investigated. Moreover, dependence of plateau stress on strain rate was investigated in case of cellular 6061 alloy with low porosities(%)

  • PDF

Bond Characteristics of Reinforcing Bars Embeded in High Strength Concrete (고강도 콘크리트에 매립된 철근의 부착특성)

  • 최종수;유석형;안종문;이광수;신성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.319-324
    • /
    • 1994
  • Bond test was carried out to assess the effect of several variables on bond characteristics between reinforcing bar and concrete. Key variables are concrete compressive strength(low, medium high, and ultra-high), bar diameter(13mm and 22mm), and concrete cover(25mm; 1-inch, 38mm; 1.5-inch, and 51mm; 2-inch). Confining effect and bar spacing are not taken into account. Thirty-two specimens subjected to uniaxial tension were tested under hypothesis uniform bond stress distribution along the reinforcing bar embeded in concrete. Test results(ultimate bond stress) were compared with bond and development provisions of the ACI building Code(ACl 318-89) and local bond stress versus slip relationship diagram represented to show effect of the above variables.

  • PDF