• Title/Summary/Keyword: Uniaxial Tensile Test

Search Result 230, Processing Time 0.024 seconds

Cracking Behavior of RC Panels under Biaxial Tension (이축인장을 받는 철근콘크리트 패널의 균열 거동)

  • 곽효경;김도연
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.599-606
    • /
    • 2003
  • An analytical model which can simulate the post-cracking nonlinear behavior of reinforced concrete (RC) members such as bars and panels subjected to uniaxial and biaxial tensile stresses is presented. The proposed model includes the description of biaxial failure criteria and the average stress-strain relation of reinforcing steel. Based on strain distribution functions of steel and concrete after cracking, average response of an embedded reinforcement, a criterion to consider the tension-stiffening effect is proposed using the concept of average stresses and strains. The validity of the introduced model is established by comparing the analytical predictions for reinforced concrete tension members with results from experimental studies. Finally, correlation studies between analytical results and experimental data from biaxial tension test are conducted with the objective to establish the validity of the proposed models and identify the significance of various effects on the response of biaxially loaded reinforced concrete panels.

  • PDF

Assessing Compressive Failure Characteristics of Hybrid Fiber Reinforced Cementitious Composites by Acoustic Emission (AE기법에 의한 하이브리드 섬유보강 시멘트복합체의 압축파괴특성 평가)

  • Kim, Sun-Woo;Ji, Sang-Kyu;Jeon, Su-Man;Yun, Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.229-232
    • /
    • 2006
  • The HPFRCCs show that the multiple crack propagation, high tensile strength and ductility due to the interfacial bonding of the fibers to the cement matrix. Moreover, performance of cement composites varies according to type and weight contents of reinforcing fiber. and HPFRCCs with hybrid fiber have better performance than HPFRCCs with single fiber in damage tolerance. Total four cylindrical specimens were tested, and the main variables were the type and weight contents of fiber, which was polyvinylalchol (PVA), polyethylene (PE). In order to clarify effect of hybrid types on the characteristics of fracture and damage process in cement composites, AE method was performed to detect micro-cracking in HPFRCCs under cyclic compression. Loading conditions of the uniaxial compression test were monotonic and cyclic loading. And from AE parameter value, it is found that the second and third compressive load cycles resulted in successive decrease of the amplitude as compared with the first compressive load cvcle.

  • PDF

A Study on the Safety Evaluation of Design for Piping Materials (II) (배관용재료의 설계시 안전성 평가에 관한 연구(II))

  • 김복기
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.3
    • /
    • pp.3-10
    • /
    • 1995
  • For most engineering materials are influenced by the dominant mechanism resisting crack extention under large scale yielding conditions. Continuum mechanics analysis shows that fracture toughness, in addition to depending on young's modulus, flow stress strain hardening exponent, and yield strain, should be nearly proportoinal to the effective fracture ductility obtained for the stress state characteristic for region ahead of the crack; plane stress or plane strain. It's known that, in most ductile materials, crack propagation of the material strongly governed by the $J_{IC}$ value, which is still difficult to determine for it's complicate and treble-some determinative process. This paper, on the assumption that, initiation of crack tip strain field reaches on the relationships between the critical value of J-integral ($J_{IC}$) and the local fracture strain(${\varepsilon}_c$) in uniaxial tensile test in the region of maximun reduction areas was described.

  • PDF

A Study on the Safety Evaluation of Design for Piping Materials(III) (배관용 재료의 설계시 안전성 평가에 관한 연구(III))

  • 김복기
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.1
    • /
    • pp.11-15
    • /
    • 1996
  • For the assessment of fracture behaviors of structural components, various fracture mechanics parameters have been applied to date. New approaches to analyze structural fracture performance under elastic-plastic condition have been proposed by the development of testing methods for characterization of material behavior which is defying to the analysis by conventional fracture parameters. In this study, on the assumption that, initiation of crack propagation of a piping materials occurs when the crack tip strain field reaches "the local fracture strain", following two major issues are discussed ; 1) The relationship between the critical value of J-integral($J_{IC}$) and the local fracture strain (${\varepsilon}_c$) in uniaxial tensile test in the region of maximum reduction area was described. 2) To proved the validity of above relations a series of tests were performed under various temperature and on the different piping materials.materials.

  • PDF

Comparison of Hybrid Hemming and Roller Hemming Using Finite Element Analysis (유한요소해석을 이용한 하이브리드 헤밍과 롤러 헤밍의 비교)

  • Jo, D.S.;Oh, M.H.;Kim, R.H.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.30 no.3
    • /
    • pp.119-124
    • /
    • 2021
  • In this study, the hybrid and roller hemming processes of aluminum alloy sheets were compared using the finite element analysis. The aluminum alloy 6014-T4 sheet with a thickness of 1 mm was used for the hemming process. The mechanical properties of the aluminum sheet obtained through a uniaxial tensile test were used for the simulation. The finite element analysis of hybrid and roller hemming was performed using a commercial software (ABAQUS) by the use of the mechanical properties. The finite element simulation results showed that the hybrid hemming holds an advantage over the roller hemming in terms of the dimensional accuracy

True Stress-True Strain Curve Fitting Methodology for Finite Element Analysis (유한요소해석을 위한 재료의 진응력-진변형률 커브 피팅 방법론)

  • Kim, Y.J.;Gu, G.H.;Seo, M.H.;Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.31 no.4
    • /
    • pp.194-199
    • /
    • 2022
  • In finite element method (FEM) simulations, constitutive models are widely used and developed to represent a wide range of true stress-strain curves using a small number of modeling parameters. Nevertheless, many studies has been conducted to find a suitable constitutive model and optimal modeling parameters to represent experimentally obtained true stress-strain curves. Therefore, in this study, a new constitutive modeling approach using the combined Swift and Voce model is suggested, and confirmed through comparisons of the experimental results with the FEM simulation results.

Nonlinear viscous material model

  • Ivica Kozar;Ivana Ban;Ivan Zambon
    • Coupled systems mechanics
    • /
    • v.12 no.5
    • /
    • pp.419-428
    • /
    • 2023
  • We have developed a model for estimating the parameters of viscous materials from indirect tensile tests for asphalt. This is a simple Burger nonlinear rheological two-cell model or standard model. At the same time, we begin to develop a more versatile and complex multi-cell model. The simple model is validated using experimental load-displacement results from laboratory tests: The recorded displacements are used as input values and the measured force data are simulated with the model. The optimal model parameters are estimated using the Levenberg-Marquardt method and a very good agreement between the experimental results and the model calculations is shown. However, not all parts of the model are active in the loading phase of the experiment, so we extended the validation of the model to the simulation of the relaxation behaviour. In this stage, the other model parameters are activated and the simulation results are consistent with the literature. At this stage, we have estimated the parameters only for the two-cell uniaxial model, but further work will include results for the multi-cell model.

The comparison between NBD test results and SCB test results using experimental test and numerical simulation

  • Fu, Jinwei;Sarfarazi, Vahab;Haeri, Hadi;Naderi, K.;Fatehi Marji, Mohammad;Guo, Mengdi
    • Advances in concrete construction
    • /
    • v.13 no.1
    • /
    • pp.83-99
    • /
    • 2022
  • The two, NBD and SCB tests using gypsum circular discs each containing a single notch have been experimentally accomplished in a rock mechanics laboratory. These specimens have also been numerically modelled by a two-dimensional particle flow which is based on Discrete Element Method (DEM). Each testing specimen had a thickness of 5 cm with 10 cm in diameter. The specimens' lengths varied as 2, 3, and 4 cm; and the specimens' notch angles varied as 0°, 45° and 90°. Similar semi-circular gypsum specimens were also prepared each contained one edge notch with angles 0° or 45°. The uniaxial testing machine was used to perform the experimental tests for both NBD and SCB gypsum specimens. At the same time, the numerical simulation of these tests were performed by PFC2D. The experimental results showed that the failure mechanism of rocks is mainly affected by the orientations of joints with respect to the loading directions. The failure mechanism and fracturing patterns of the gypsum specimens are directly related to the final failure loading. It has been shown that the number of induced tensile cracks showing the specimens' tensile behavior, and increases by decreasing the length and angle of joints. It should be noted that the fracture toughness of rocks' specimens obtained by NBD tests was higher than that of the SCB tests. The fracture toughness of rocks usually increases with the increasing of joints' angles but increasing the joints' lengths do not change the fracture toughness. The numerical solutions and the experimental results for both NDB and SCB tests give nearly similar fracture patterns during the loading process.

A new rock brittleness index on the basis of punch penetration test data

  • Ghadernejad, Saleh;Nejati, Hamid Reza;Yagiz, Saffet
    • Geomechanics and Engineering
    • /
    • v.21 no.4
    • /
    • pp.391-399
    • /
    • 2020
  • Brittleness is one of the most important properties of rock which has a major impact not only on the failure process of intact rock but also on the response of rock mass to tunneling and mining projects. Due to the lack of a universally accepted definition of rock brittleness, a wide range of methods, including direct and indirect methods, have been developed for its measurement. Measuring rock brittleness by direct methods requires special equipment which may lead to financial inconveniences and is usually unavailable in most of rock mechanic laboratories. Accordingly, this study aimed to develop a new strength-based index for predicting rock brittleness based on the obtained base form. To this end, an innovative algorithm was developed in Matlab environment. The utilized algorithm finds the optimal index based on the open access dataset including the results of punch penetration test (PPT), uniaxial compressive and Brazilian tensile strength. Validation of proposed index was checked by the coefficient of determination (R2), the root mean square error (RMSE), and also the variance for account (VAF). The results indicated that among the different brittleness indices, the suggested equation is the most accurate one, since it has the optimal R2, RMSE and VAF as 0.912, 3.47 and 89.8%, respectively. It could finally be concluded that, using the proposed brittleness index, rock brittleness can be reliably predicted with a high level of accuracy.

Finite Element Analysis of Gaskets for Hydrogen Fuel Cells (수소 연료전지용 가스켓의 유한요소해석)

  • Cheon, Kang-Min;Jang, Jong-Ho;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.95-101
    • /
    • 2021
  • An analysis was conducted to predict the behavior of gasket by applying an optimal-strain energy-density function selected through a uniaxial tensile test and an analysis of the gasket used in an actual hydrogen fuel cell. Among the models compared to predict the materials' properties, the Mooney-Rivlin secondary model showed the behavior most similar to the test results. The maximum stress of the gasket was not significantly different, depending on the location. The maximum surface pressure of the gasket was higher at positions "T" and "Y" than at other positions, owing to the branch-shape effect. In the future, a jig that can measure the surface pressure will be manufactured and a comparative verification study will be conducted between the test results and the analysis results.