• Title/Summary/Keyword: Uniaxial Compression

Search Result 512, Processing Time 0.024 seconds

Experimental Study on the Elastic Constants of A Transversely Isotropic Rock by Multi-Specimen Compression Tests Report 1 - Focus on Data Analysis (다중시험편 시험에 의한 평면이방성 암석의 탄성상수 분석연구 제 1 보 - 자료해석을 중심으로)

  • Park, Chul-Whan;Park, Chan;Synn, Joong-Ho;Jung, Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.20 no.6
    • /
    • pp.455-464
    • /
    • 2010
  • The variations of the uniaxial compressive strength, the strains and the elastic constants with respect to the angle of anisotropy are analyzed in order to investigate the characteristics of a transversely isotropic rock experimentally. Total 35 specimens of 7 different angles from a large block of rhyolite presenting the flow structure obviously are used in tests. This study is composed of two reports; the elastic constants are mainly analyzed for the every individual angle in the report No. 1 and they will be discussed synthetically in the report No. 2. From the specimens of 0 and 90 degree, 4 independent elastic constants which can directly be obtained without the help of any other suggested equations, may be referred to the true values. Data variation in the strain measurements differs on the angle is analyzed. That of small angle specimens tends higher than that of large angle specimens. The relation of apparent Young’s modulus and angle is found to be M- or U-shaped. For small angle specimens, Saint-Venant approximation cannot be applied successfully on account of showing the non-monotonous increase, and E1 is analyzed out of the true value range. In the specimen of $\phi$ = 75, the deviation of strain measurement and strength are smallest and 4 all constants are analyzed in the true value range. Therefore, specimen of the angle of around 75 may become preferable if only one specimen should be used in test of a transversely isotropic rock.

An Experimental Study on the Creep Behavior of Frozen Sand (동결 사질토의 크리프 거동에 관한 실험적 연구)

  • Chae, Deokho;Kim, Youngseok;Lee, Jangguen;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.2
    • /
    • pp.27-36
    • /
    • 2014
  • Due to the latitudinal location of Korea, the seasonally frozen ground has been focused on as research topics such as the frost heaving under the asphalt road rather than the permafrost ground. However, the recent construction of the second Korean Antarctic research station, the Jangbogo station and the participation on the development of the natural gas pipeline in Russia arouse the research interests on the behavior of the permafrost ground. At the design process of the geotechnical structures on the permafrost ground, the evaluation of the creep characteristics of the frozen soil is very crucial. Since the domestic specification on the frozen soil testing does not exist currently, it is necessary to evaluate the creep characteristics of frozen soils systematically with regard to the affecting factors. Therefore, the creep characteristics of the frozen specimens of dense Jumoonjin sand were evaluated under various loads at -5 and $-10^{\circ}C$. Based on the test results, as the load became close to the strength and the temperature became lower, the duration of the secondary creep became shorter and more distinct tertiary creep responses were observed.

A Study on the Frictional Resistance Chracteristics of Pressurized Soil Nailing Using Rapid Setting Cement (초속경 시멘트를 사용한 가압식 쏘일네일링의 주입시간에 따른 마찰저항특성에 관한 연구)

  • Lee, Arum;Shin, Eunchul;Lee, Chulhee;Rim, Yongkwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.1-10
    • /
    • 2018
  • Although the soil nailing method is generally used as a gravity grouting, the development and application of pressurized grouting method has recently increased to address the problem of joint generation and filling due to grouting. Pressurized grouting of the soil nailing method is generally used in combination with ordinary portland cement and water. In the field, the cement is mixed with the rapid setting cement to reduce curing time because ordinary portland cement takes more than 10 days to satisfy the required strength. In this study, uniaxial compression tests and laboratory tests were carried out to confirm the efficiency of the grouting material according to the mixing ratio of rapid setting cement. The mixing ratio of 30% grouting satisfies the required strength within 7 days and satisfies the optimum gel time. As a result of the laboratory test with granite weathered soil, the reinforcing effect was confirmed to be 1.5 times as compared with the gravity type at an injection time of 10 seconds and a strain of 15%. The friction resistance increases linearly with the increase of the injection time, but it is confirmed that the friction resistance decreases due to the hydraulic fracturing effect at the injection time exceeding the limit injection pressure. Numerical analysis was performed to compare the stability of slopes not reinforced with slopes reinforced with gravity and pressurized soil nailing.

Non-contact Stress Measurement in Steel Member using Piezospectroscopy (압분광법을 이용한 강재의 비접촉식 응력측정)

  • Kim, Jongwoo;Kim, Namgyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.92-95
    • /
    • 2019
  • In this paper, a novel laser-based non-contact and non-destructive stress measurement technique is newly proposed for measuring stress in steel structural members. As the demand of stress monitoring in structural members is increased, various non-destructive techniques are being applied to the field of structural health monitoring. Spectroscopic techniques are non-contact technique and widely used for chemical identification of target materials. Especially, piezospectroscopic technique is a residual stress measurement technique in thermal barrier coatings. Although the piezospectroscopic technique has high possibility of measuring structural stress in steel members, the technique has been rarely applied to this field. In this paper, piezospectroscopy-based stress measurement technique is, therefore, proposed for measuring stress in steel structural member. To do that, alumina particles have been coated onto a specimen of a structural steel rod using a thermal spray coating technique. And then, an uniaxial compression test has been conducted to the specimen to collect each fluorescence spectrum under different loading conditions. Finally, the linear relation of spectral shift and applied compressive stress of the specimen has been experimentally established.

High Thermal Conductivity h-BN/PVA Composite Films for High Power Electronic Packaging Substrate (고출력 전자 패키지 기판용 고열전도 h-BN/PVA 복합필름)

  • Lee, Seong Tae;Kim, Chi Heon;Kim, Hyo Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.95-99
    • /
    • 2018
  • High thermal conductivity films with electrically insulating properties have a great potential for the effective heat transfer as substrate and thermal interface materials in high density and high power electronic packages. There have been lots of studies to achieve high thermal conductivity composites using high thermal conductivity fillers such alumina, aluminum nitride, boron nitride, CNT and graphene, recently. Among them, hexagonal-boron nitride (h-BN) nano-sheet is a promising candidate for high thermal conductivity with electrically insulating filler material. This work presents an enhanced heat transfer properties of ceramic/polymer composite films using h-BN nano-sheets and PVA polymer resins. The h-BN nano-sheets were prepared by a mechanical exfoliation of h-BN flakes using organic media and subsequent ultrasonic treatment. High thermal conductivities over $2.8W/m{\cdot}K$ for transverse and $10W/m{\cdot}K$ for in-plane direction of the cast films were achieved for casted h-BN/PVA composite films. Further improvement of thermal conductivity up to $13.5W/m{\cdot}K$ at in-plane mode was achieved by applying uniaxial compression at the temperature above glass transition of PVA to enhance the alignment of the h-BN nano-sheets.

The Engineering Characteristics of the Sludge Mixed Soil (슬러지 혼합토의 공학적 특성)

  • Kim, JungUn;Kim, MyeongKyun;Bae, WooSeok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.5
    • /
    • pp.43-50
    • /
    • 2011
  • As a result of population growth and economic growth, household and industrial wastes continue to rapidly increase every year. Especially, sewage sludge produced at final stage is increasing with the constant construction and putting in good order of the sewage plant. In addition to the government's prohibition for filling up the sludge, it became more and more difficult to discharge wastes to the sea as London Dumping Convention '96 came into effect. And sewage sludge and the livestock wastes are expected to be thoroughly prohibited from discharging to the sea from 2012. So we need desperately economical and useful alternatives to compact and reuse these wastes. The purpose of this study is to evaluate the utilization of solidified sludge-soil mixture as an enhancement and covering material. To determine the proper mixed ratio of solidified sludge, this study conducted basic physical properties tests, compaction tests, uniaxial compression tests, and permeability test. It was found that the higher the ratio of solidified sludge, the lower the coefficient of permeability. Upon the results of particle size distribution, the mixed ratio of solidified sludge that meet the enhancement material condition was 59% or lower for SP granite soil and 48% or lower for SM granite soil respectively.

Performance of Railway Roadbed Reinforced by Acrylate in Laboratory Experiment (실내실험을 통한 아크릴레이트의 철도노반 보강 성능)

  • Yoon, Hwan-Hee;Son, Min;Kim, Jin-Hwan;Kim, Dong-Hyun;Kim, Byung-Hyun;Jung, Hyuk-Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.1
    • /
    • pp.9-19
    • /
    • 2021
  • This paper deals with the reinforcement performance of acrylate for reinforcing the settled railway roadbed. Concrete tracks have the advantage of reducing track maintenance costs and high resistance to track destruction. However, roadbed settlement is occurring in some construction sections, and the safety of railways is a serious concern because of difficulties in maintenance. Currently, maintenance through the track restoration method is being carried out in Korea as a way of roadbed settlement in concrete tracks, but continuous re-settlement can occur because the roadbed itself cannot be reinforced, and there are very few cases of reinforcement of railway roadbeds and field application. So the development of reinforcement materials and construction methods to reinforce railway roadbeds is required. Therefore, in this paper, acrylate was selected as reinforcement material for railway roadbed, and the reinforcement performance of acrylate was analyzed through experiment. As a result, it was analyzed that the acrylate can penetrate into a permeability coefficient of 1×10-4 cm/sec, and secure uniaxial compression strength of 0.5 MPa/30min or more and stiffness of 80 MPa or more.

A Study on the Prediction of Rock Classification Using Shield TBM Data and Machine Learning Classification Algorithms (쉴드 TBM 데이터와 머신러닝 분류 알고리즘을 이용한 암반 분류 예측에 관한 연구)

  • Kang, Tae-Ho;Choi, Soon-Wook;Lee, Chulho;Chang, Soo-Ho
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.494-507
    • /
    • 2021
  • With the increasing use of TBM, research has recently been conducted in Korea to analyze TBM data with machine learning techniques to predict the ground in front of TBM, predict the exchange cycle of disk cutters, and predict the advance rate of TBM. In this study, classification prediction of rock characteristics of slurry shield TBM sites was made by combining traditional rock classification techniques and machine learning techniques widely used in various fields with machine data during TBM excavation. The items of rock characteristic classification criteria were set as RQD, uniaxial compression strength, and elastic wave speed, and the rock conditions for each item were classified into three classes: class 0 (good), 1 (normal), and 2 (poor), and machine learning was performed on six class algorithms. As a result, the ensemble model showed good performance, and the LigthtGBM model, which showed excellent results in learning speed as well as learning performance, was found to be optimal in the target site ground. Using the classification model for the three rock characteristics set in this study, it is believed that it will be possible to provide rock conditions for sections where ground information is not provided, which will help during excavation work.

Strength Analysis of 3D Concrete Printed Mortar Prism Samples (3D 콘크리트 프린팅된 모르타르 프리즘 시편의 강도 분석)

  • Kim, Sung-Jo;Bang, Gun-Woong;Han, Tong-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.4
    • /
    • pp.227-233
    • /
    • 2022
  • The 3D-printing technique is used for manufacturing objects by adding multiple layers, and it is relatively easy to manufacture objects with complex shapes. The 3D concrete printing technique, which incorporates 3D printing into the construction industry, does not use a formwork when placing concrete, and it requires less workload and labor, so economical construction is possible. However, 3D-printed concrete is expected to have a lower strength than that of molded concrete. In this study, the properties of 3D-printed concrete were analyzed. To fabricate the 3D-printed concrete samples, the extrusion path and shape of the samples were designed with Ultimaker Cura. Based on this, G-codes were generated to control the 3D printer. The optimal concrete mixing proportion was selected considering such factors as extrudability and buildability. Molded samples with the same dimensions were also fabricated for comparative analysis. The properties of each sample were measured through a three-point bending test and uniaxial compression test, and a comparative analysis was performed.

Experimental Study to Evaluate Thermal and Mechanical Behaviors of Frozen Soils according to Organic Contents (유기물 함유량에 따른 동토 시료의 열적·역학적 거동 평가를 위한 실험적 연구)

  • Sangyeong Park;Hyeontae Park;Hangseok Choi;YoungSeok Kim;Sewon Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.2
    • /
    • pp.53-62
    • /
    • 2024
  • Recently, development of non-traditional energy such as oil sands has been actively conducted in the cold region such as Canada. Frozen soil has different thermal and mechanical characteristics from general soil due to its high organic contents. This study evaluated the impact of organic matter content on the thermal and mechanical behavior of frozen soil samples collected from Alberta, Canada, and Gangwon Province, South Korea. As the organic content increases, the maximum dry unit weight decreases and the optimum moisture content increases in compaction tests. In uniaxial compression tests under frozen conditions, the strength of the frozen specimens increased as the temperature decreased. The strength of Canada soil sample increased with higher organic matter content at low temperatures. However, the strength of frozen soil was not significantly affected by organic matter content due to the complex behavior and unfrozen water content. Thermal conductivity tests showed higher thermal conductivity in frozen conditions compared to unfrozen conditions, due to the higher thermal conductivity of ice compared to water. These findings provide essential data for geotechnical design and construction in large-scale projects such as oil sands development in cold regions. Further research is needed to explore the impact of organic matter content on different types of frozen soils.