• Title/Summary/Keyword: Ungauged

Search Result 183, Processing Time 0.026 seconds

Waterbody Detection from Sentinel-2 Images Using NDWI: A Case of Hwanggang Dam in North Korea (Sentinel-2 기반 NDWI를 이용한 수체 탐지 연구: 북한 황강댐을 사례로)

  • Kye, Changwoo;Shin, Dae-Kyu;Yi, Jonghyuk;Kim, Jingyeom
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1207-1214
    • /
    • 2021
  • In thisletter, we developed technology which can exclude effect of cloudsto perform remote waterbody detection based on Sentinel-2 optical satellite imagery to calculate the area of ungauged reservoirs and applied to the Hwanggang dam reservoir, a representative ungauged reservoir, to verify usability. The remote waterbody detection technology calculates the cloud blocking ratio by comparing the cloud boundary in the Sentinel-2 imagery and the reservoir boundary first. Next, itselects data whose cloud blocking ratio does not exceed a specific value and calculates NDWI (Normalized Difference Water Index) with selected imagery. In last, it calculatesthe area of the reservoir by counting the number of grids which have NDWI value considered as waterbody within the boundary of the target reservoir and correcting with cloud blocking ratio. To determine cloud blocking ratio threshold forselecting image, we performed the area calculation of Hwanggang dam reservoir from July 2018 to October 2021. As a result, when the cloud blocking ratio threshold wasset 10%, we confirmed that the result with large error due to clouds were filtered well and obtained 114 results that can show changes in Hwanggang dam reservoir area among 220 images.

A study on estimation of lowflow indices in ungauged basin using multiple regression (다중회귀분석을 이용한 미계측 유역의 갈수지수 산정에 관한 연구)

  • Lim, Ga Kyun;Jeung, Se Jin;Kim, Byung Sik;Chae, Soo Kwon
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.12
    • /
    • pp.1193-1201
    • /
    • 2020
  • This study aims to develop a regression model that estimates a low-flow index that can be applied to ungauged basins. A total of 30 midsized basins in South Korea use long-term runoff data provided by the National Integrated Water Management System (NIWMS) to calculate average low-flow, average minimum streamflow, and low-flow index duration and frequency. This information is used in the correlation analysis with 18 basin factors and 3 climate change factors to identify the basin area, average basin altitude, average basin slope, water system density, runoff curve number, annual evapotranspiration, and annual precipitation in the low-flow index regression model. This study evaluates the model's accuracy by using the root-mean-square error (RMSE) and the mean absolute error (MAE) for 10 ungauged, verified basins and compares them with the previous model's low-flow calculations to determine the effectiveness of the newly developed model. Comparative analysis indicates that the new regression model produces average low-flow, attributed to the consideration of varied basin and hydrologic factors during the new model's development.

Regionalization of rainfall-runoff model parameters based on the correlation of regional characteristic factors (지역특성인자의 상호연관성을 고려한 강우-유출모형 매개변수 지역화)

  • Kim, Jin-Guk;Sumyia, Uranchimeg;Kim, Tae-Jeong;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.11
    • /
    • pp.955-968
    • /
    • 2021
  • A water resource plan is routinely based on a natural flow and can be estimated using observed streamflow data or a long-term continuous rainfall-runoff model. However, the watershed with the natural flow is very limited to the upstream area of the dam. In particular, for the ungauged watershed, a rainfall-runoff model is established for the gauged watershed, and the model is then applied to the ungauged watershed by transferring the associated parameters. In this study, the GR4J rainfall-runoff model is mainly used to regionalize the parameters that are estimated from the 14 dam watershed via an optimization process. In terms of optimizing the parameters, the Bayesian approach was applied to consider the uncertainty of parameters quantitatively, and a number of parameter samples obtained from the posterior distribution were used for the regionalization. Here, the relationship between the estimated parameters and the topographical factors was first identified, and the dependencies between them are effectively modeled by a Copula function approach to obtain the regionalized parameters. The predicted streamflow with the use of regionalized parameters showed a good agreement with that of the observed with a correlation of about 0.8. It was found that the proposed regionalized framework is able to effectively simulate streamflow for the ungauged watersheds by the use of the regionalized parameters, along with the associated uncertainty, informed by the basin characteristics.

Comparative analysis of ONE parameter hydrological model on domestic watershed (ONE 모형의 국내유역 적용 및 비교 분석)

  • Ko, Heemin;An, Hyunuk;Noh, Jaekyung;Lee, Seungjun
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.1
    • /
    • pp.59-72
    • /
    • 2024
  • Agricultural reservoirs supply water for various purposes such as irrigation, maintenance, and living. Since agricultural reservoirs respond sensitively to seasonal and climate changes, it is essential to estimate supply and inflow for efficient operation, and water management should be done based on these data. However, in the case of agricultural reservoirs, the measurement of supply and inflow is relatively insufficient compared to multi-purpose dams, and inflow-supply analysis in agricultural reservoirs through water balance analysis is necessary for efficient water management. Therefore, rainfall-runoff analysis models such as ONE model and Tank model have been developed and used for reservoir water balance analysis, but the applicability analysis for ungauged watersheds is insufficient. The ONE model is designed for daily runoff calculation, and the model has one parameter, which is advantageous for calibration and ungauged watershed analysis. In this study, the water balance was analyzed through the ONE model and the Tank model for 15 watersheds upstream of dams, and R2 and NSE were used to quantitatively compare the performance of the two models. The simulation results show that the ONE model is suitable for predicting the inflow of agricultural reservoirs with the ungauged watershed

Estimation of the Flash Flood Index for Ungauged Catchments (미계측유역에서의 돌발홍수지수 산정)

  • Kim, Eung-Seok;Choi, Hyun-Il
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.20-23
    • /
    • 2010
  • 본 연구의 목적은 Bhaskar 등(2000)의 연구를 우리나라 유역에 적용하여, 기왕홍수사상에 따른 유출수문곡선의 특성을 이용한 돌발홍수지수(Flash Flood, Index, FFI)를 산정함으로써 유역에서 발생하는 돌발홍수의 심각성 정도를 정량화하고자 하였다. 또한, Bhaskar 등(2000)의 연구내용을 보다 확장하여 미계측유역에서 적용할 수 있는 새로운 돌발홍수지수를 개발하고, 돌발홍수지수와 강우특성과의 상관관계를 정량적으로 분석하였다.

  • PDF

Low flow Calculation by Stream Morphological Characteristic Parameters in Geum River System (금강수계의 하천형태학적 특성인자에 의한 갈수량 산정)

  • An, Sang-Jin;Yun, Yong-Nam;Gang, Gwan-Won
    • Water for future
    • /
    • v.14 no.1
    • /
    • pp.31-37
    • /
    • 1981
  • It was possible to synthesize the low flow frequency curves for ungauged stations of Geum river system through a correlation analysis using the morphological parameters such as basin area, bnsin relief, total stream length of first-order stream and the 7-day, 10-year low flow.

  • PDF

Stochastic Daily Weather Generations for Ungaged Stations (기상자료 미계측 지역의 추계학적 기상발생모형)

  • 강문성;박승우;진영민
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.1
    • /
    • pp.57-67
    • /
    • 1998
  • A stochastic weather generator which simulate daily precipitation, maximum and minimum daily temperature, relative humidity was developed. The model parameters were estimated using stochastic characteristics analysis of historical data of 71 weather stations. Spatial variations of the parameters for the country were also analyzed. Model parameters of ungauged Sites were determined from parameters of adjacent weather stations using inverse distance method. The model was verified on Suwon and Ulsan weather stations and showed good agreement between simulated and observed data.

  • PDF

Estimating the Total Precipitation Amount with Simulated Precipitation for Ungauged Stations in Jeju Island (미계측 관측 강수 자료 생성을 통한 제주도 지역의 수문총량 추정)

  • Kim, Nam-Won;Um, Myoung-Jin;Chung, Il-Moon;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.9
    • /
    • pp.875-885
    • /
    • 2012
  • In this study, the total precipitation amount in Jeju Island was estimated with the simulated precipitation for ungauged stations missing precipitation data using the spatial precipitation analysis. The missing data were generated through the modified multiple linear regression in this study, and the analysis of spatial precipitation was conducted with the PRISM(Parameter-elevation Regression on Independent Slope Model). The generated data with modified multiple linear regression model have similar pattern with original data. Thus, the model in this study shows good applicability to estimate the missing data. The difference of annual average precipitation between Case 1 (original data) and Case 2 (modified data) appears very small ratio which is about 1.5%. However, the difference of annual average precipitation according to elevation shows the large ratio up to 37.4%. As the results, the method of estimating missing data in this study would be useful to calculate the total precipitation amount at the low station density area and the places with the high spatial variation of precipitation.

Sensitivity Analysis of Hydrogeologic Parameters by Groundwater Table Fluctuation Model in Jeju Island (지하수위 변동 해석모델을 이용한 제주지역의 수리지질 매개변수 민감도 분석)

  • Kim, Nam Won;Kim, Youn Jung;Chung, Il-Moon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1409-1420
    • /
    • 2014
  • In this work, we have carried out a sensitivity analysis of hydrogeologic parameters such as reaction factor and drainable pore space in groundwater table fluctuation model and have found characteristics of parameter distribution according to the altitude. We found that drainable pore space which is hydrogeologic parameter of aquifer didn't show any trend with altitude while reaction factor which is groundwater flow characteristic showed clear trend with altitude. To find a sensitivity of parameters, we compared RMSE of estimated groundwater recharges by using the mean value and linear relationship of parameters. As results, the linear equation derived for entire watersheds could be applied to estimate parameters for ungauged watershed. Furthermore, the features of parameter distribution can be used to predict hydrogeologic parameter in ungauged watersheds and it is expected that those features could be used for a basic data for groundwater modeling.

Development of Parsimonious Semi-Distributed Hydrologic Partitioning Model Based on Soil Moisture Storages (토양수분 저류 기반의 간결한 준분포형 수문분할모형 개발)

  • Choi, Jeonghyeon;Kim, Ryoungeun;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.3
    • /
    • pp.229-244
    • /
    • 2020
  • Hydrologic models, as a useful tool for understanding the hydrologic phenomena in the watershed, have become more complex with the increase of computer performance. The hydrologic model, with complex configurations and powerful performance, facilitates a broader understanding of the effects of climate and soil in hydrologic partitioning. However, the more complex the model is, the more effort and time is required to drive the model, and the more parameters it uses, the less accessible to the user and less applicable to the ungauged watershed. Rather, a parsimonious hydrologic model may be effective in hydrologic modeling of the ungauged watershed. Thus, a semi-distributed hydrologic partitioning model was developed with minimal composition and number of parameters to improve applicability. In this study, the validity and performance of the proposed model were confirmed by applying it to the Namgang Dam, Andong Dam, Hapcheon Dam, and Milyang Dam watersheds among the Nakdong River watersheds. From the results of the application, it was confirmed that despite the simple model structure, the hydrologic partitioning process of the watershed can be modeled relatively well through three vertical layers comprising the surface layer, the soil layer, and the aquifer. Additionally, discussions were conducted on antecedent soil moisture conditions widely applied to stormwater estimation using the soil moisture data simulated by the proposed model.