• Title/Summary/Keyword: Uneven Terrain

Search Result 47, Processing Time 0.026 seconds

Design of the Combination and Separation Structures of a Modular Robot (모듈러 로봇의 결합 및 분리 구조 설계)

  • Ryoo, In-Hwan;Lee, Bo-Hee;Khong, Jung-Shik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3626-3635
    • /
    • 2011
  • The modular robots are a kind of system that was developed to overcome the limitation of the movement for the mobile robot with wheels or legs. In legs type mobile robot case, they are limited for velocity and balance during moving at the uneven terrain. In wheeled mobile robot case, they are also limited to overcome dump, stair and so on. The modular robots can overcome moving limitation because of their transforming ability. However, they are researched not only driving mechanism but also combination mechanism. In this paper we proposed four kinds of unique structure for the combination and separation and also its algorithm. The effectiveness of the structure is verified with building the real structure and taking experiments to the designed modular robot

Development of 6-axis force/moment sensor for an intelligent robot's foot (지능형 로봇 발을 위한 6 축 힘/모멘트센서 개발)

  • Kim, Gab-Soon;Shin, Hyi-Jun;Hu, Duk-Chan;Yoon, Jung-Won
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1097-1102
    • /
    • 2007
  • This paper describes the development of 6-axis force/moment sensor for an intelligent robot's foot. In order to walk on uneven terrain safely, the foot should perceive the applied forces Fx, Fy, Fz and moments Mx, My, Mz to itself. The applied forces and moments should be measured from a 6-axis force/moment sensor attached to a humanoid robot's foot(ankle). They in the published paper already have some disadvantage in the size of the sensor, the rated output and so on. The rated output of each component sensor (6-axis force/moment sensor) is very important to design the 6-axis force/moment sensor for precision measurement. Therefore, each sensor should be designed to be gotten similar the rated output under each rated load. So, the sensing elements of the 6-axis force/moment sensor should get lots of design variables. Also, the size of 6- axis force/moment sensor is very important for mounting to robot's foot. In this paper, a 6-axis force/moment sensor for perceiving forces and moments in a humanoid robot's foot was developed using many PPBs (parallel plate-beams). The structure of the sensor was newly modeled, and the sensing elements (plate-beams) of the sensor were designed using FEM (Finite Element Method) analysis. Then, the 6-axis force/moment sensor was fabricated by attaching strain-gages on the sensing elements, and the characteristic test of the developed sensor was carried out. The rated outputs from FEM analysis agree well with that from the characteristic test.

  • PDF

A Study on Walking Stabilization and Path Tracking of Biped Robot Using RFID (이족 보행 로봇의 보행 안정화 및 RFID를 이용한 경로 추종에 관한 연구)

  • Park, Jong-Han;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.1
    • /
    • pp.51-56
    • /
    • 2013
  • In order to apply a biped robot in real world, the robot requires a robust walking and a function of localization, path planning and navigation. Recently, localization and path planning using RFID of mobile robot has been studying. However, when the biped robot walks, it has unstability and tends to leave the path. In the paper we propose a method of walking stabilization using FSR(Force Sensing Resistor), Gyro and accelerometer for the real biped robot. Also a path tracking algorithm using RFID sensor attached in robot's foot is proposed based on localization of the robot. The proposed algorithm is verified from walking experiments using real biped robot on uneven terrain and path tracking experiments on the RFID environments.

A study for semi-static quadruped walking robot using wave gait (물결걸음새를 이용한 준정적 4족 보행로봇에 관한 연구)

  • 최기훈;김태형;유재명;김영탁
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.551-554
    • /
    • 2001
  • A necessity of remote control robots or various searching robots etc. that accomplish works given instead of human under long distance and extreme environment such as volcano, universe, deep-sea exploration and nuclear power plant etc. is increasing, and so the development and the research regarding these mobile robots are actively progressing. The wheel mobile robot or the track mobile robot have a sufficient energy efficiency under this en, but also have a lot of limits to accomplish works given which are caused from the restriction of mobile ability. Therefore, recently many researches for the walking robot with superior mobility and energy efficiency on the terrain, which is uneven or where obstacles, inclination and stairways exist, have been doing. The research for these walking robots is separated into fields of mechanism and control system, gait research, circumference environment and system condition recognition etc. greatly. It is a research field that the gait research among these is the centralist in actual implementation of walking robot unlike different mobile robots. A research field for gait of walking robot is classified into two parts according to the nature of the stability and the walking speed, static gait or dynamic gait. While the speed of a static gait is lower than that of a dynamic gait, a static gait which moves the robot to maintain a static stability guarantees a superior stability relatively. A dynamic gait, which make the robot walk controlling the instability caused by the gravity during the two leg supporting period and so maintaining the stability of the robot body spontaneously, is suitable for high speed walking but has a relatively low stability and a difficulty in implementation compared with a static gait. The quadruped walking robot has a strong point that can embody these gaits together. In this research, we will develope an autonomous quadruped robot with an asaptibility to the environment by selectry appropriate gait, element such as duty factor, stride, trajectory, etc.

  • PDF

Development of 6-Axis Force/Moment Sensor Considered Adult Weight for a Humanoid Robot's Foot (성인 체중을 고려한 로봇의 지능형 발을 위한 6축 힘/모멘트센서 개발)

  • Kim, Gab-Soon;Yoon, Jung-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.7 s.196
    • /
    • pp.90-97
    • /
    • 2007
  • This paper describes the development of 6-axis force/moment sensor considered adult weight far an intelligent foot of humanoid robot. In order to walk on uneven terrain safely, the foot should perceive the applied forces Fx, Fy, Fz and moments Mx, My, Mz to itself and control the foot using the forces and moments. The applied forces and moments should be measured from a 6-axis force/moment sensor attached to the foot, which is composed of Fx sensor, Fy sensor, Fz sensor, Mx sensor, My sensor and Mz sensor in a body. Each sensor should get the deferent rated load, because the applied forces and moments to foot in walking are deferent. Therefore, one of the important things in the sensor is to design each sensor with the deferent rated load and the same rated output. In this paper, a 6-axis force/moment sensor (rated load of Fx and Fy are 500Nm and Fz sensor is 1000N, and those of Mx and My are 18Nm, Mz sensor is 8Nm) for perceiving forces and moments in a humanoid robot's foot was developed using many PPBs (parallel plate-beams). The structure of the sensor was newly modeled, and the sensing elements (plate-beams) of the sensor were designed using by ANSYS software (FEM (Finite Element Method) program). Then, a 6-axis force/moment sensor was fabricated by attaching strain-gages on the sensing elements, and the characteristic test of the developed sensor was carried out. The rated outputs from FEM analysis agree well with that from the characteristic test.

Multi-legged Walking Robot Using Complex Linkage Structure (복합 링크기구를 이용한 다족 보행로봇)

  • Im, Sang-Hyun;Lee, Dong Hoon;Kang, Hyun Chang;Kim, Sang-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.74-79
    • /
    • 2021
  • Generally, multi-legged walking robots have excellent mobility in rough and uneven terrain, and they are deployed for the safety of rescuers in various disaster environments. However, as each leg is driven by a number of actuators, it leads to a complicated structure and high power consumption; therefore, it is difficult to put them into practical use. In this article, a new concept is proposed of a walking robot whose legs are driven by a complex linkage structure to overcome the deficiencies of conventional multi-legged walking robots. A double crank-rocker mechanism is proposed, making it possible for one DC motor to actuate the left and right movements of two neighboring thighs of the multi-legged walking robot. Each leg can also move up and down through an improved cam structure. Finally, each mechanism is connected by spur and bevel gears, so that only two DC motors can drive all legs of the walking robot. The feasibility of the designed complex linkage mechanism was verified using the UG NX program. It was confirmed through actual production that the proposed multi-legged walking robot performs the desired motion.

Study on the design and the control of an underwater construction robot for port construction (항만공사용 수중건설로봇의 기구설계 및 제어에 관한 연구)

  • Kim, Tae-Sung;Kim, Chi-Hyo;Lee, Min-Ki
    • Journal of Navigation and Port Research
    • /
    • v.39 no.3
    • /
    • pp.253-260
    • /
    • 2015
  • There are many efforts to mechanize the process for underwater port construction due to the severe and adverse working environment. This paper presents an underwater construction robot to level rubbles on the seabed for port construction. The robot is composed of a blade and a multi-functional arm to flatten the rubble mound with respect to the reference level at uneven terrain and to dig and dump the rubbles. This research analyzes the kinematics of the blade and the multi-functional arm including track and swing motions with respect to a world coordinate assigned to a reference depth sensor. This analysis is conducted interfacing with the position and orientation sensors installed at the robot. A hydraulic control system is developed to control a track, a blade and a multi-functional arm for rubble leveling work. The experimental results of rubble leveling work conducted by the robot are presented in land and subsea. The working speed of the robot is eight times faster than that of a human diver, and the working quality is acceptable. The robot is expected to have much higher efficiency in deep water where a human diver is unable to work.