• Title/Summary/Keyword: Undrained test

Search Result 247, Processing Time 0.023 seconds

A Study on the Characteristics of Alluvial Clay in Yangsan-Mulgum (양산-물금 충적점토의 토질특성에 관한 연구)

  • 이달원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.1
    • /
    • pp.102-111
    • /
    • 1997
  • Experiments both in laboratory and field were performed to compare and analyze the characteristics of alluvial clay. The alluvial clay was sampled in test site in which large-scaled tests for the part of the site are under process to suggest the rational method for alluvial clay and the criterion for ground settlement monitoring system. The followings were observed through the experiments : 1. Natural water content, plastic limit, and liquid limit of alluvial clay composed of highly fine grains were 40~80%, 10~20%, and 30~55%, respectively. The values of these properties were relatively small at the ground surface, while the values showed maximum at G.L.- l0m and gradually decreased below the level. 2. Shear strength of alluvial clay was proportionally increased to the depth. Unconfined and triaxial compressive strengths were 0.2~0.6kgf/$cm^2$ and 0.1~0.3kgf/$cm^2$, respectively. 3. Compression index and secondary compression index showed maximum values at G.L.-l0m and gradually decreased below the level. The value of consolidation coefficient was relatively large at the ground surface, constant with decreasing the depth, and incresed when G.L. was below -20m. 4. Piezocone test appeared that alluvial clay with N value of 2~4 was uniformly distributed with 20~ 30m thickness from the ground surface, sand seam was nonuniformly distributed, and penetration pore pressure was 0.8 ~ 1 times of the hydrostatic pressure. Undrained shear strength and consolidation coefficient were 0.04 ~ 0.76kgf / $cm^2$ and $2.88{\times} 10{^-4}~1.3{\times} 10{^-2} cm^2/s$ respectively.

  • PDF

Predicting the CPT-based pile set-up parameters using HHO-RF and PSO-RF hybrid models

  • Yun Dawei;Zheng Bing;Gu Bingbing;Gao Xibo;Behnaz Razzaghzadeh
    • Structural Engineering and Mechanics
    • /
    • v.86 no.5
    • /
    • pp.673-686
    • /
    • 2023
  • Determining the properties of pile from cone penetration test (CPT) is costly, and need several in-situ tests. At the present study, two novel hybrid learning models, namely PSO-RF and HHO-RF, which are an amalgamation of random forest (RF) with particle swarm optimization (PSO) and Harris hawks optimization (HHO) were developed and applied to predict the pile set-up parameter "A" from CPT for the design aim of the projects. To forecast the "A," CPT data along were collected from different sites in Louisiana, where the selected variables as input were plasticity index (PI), undrained shear strength (Su), and over consolidation ratio (OCR). Results show that both PSO-RF and HHO-RF models have acceptable performance in predicting the set-up parameter "A," with R2 larger than 0.9094, representing the admissible correlation between observed and predicted values. HHO-RF has better proficiency than the PSO-RF model, with R2 and RMSE equal to 0.9328 and 0.0292 for the training phase and 0.9729 and 0.024 for testing data, respectively. Moreover, PI and OBJ indices are considered, in which the HHO-RF model has lower results which leads to outperforming this hybrid algorithm with respect to PSO-RF for predicting the pile set-up parameter "A," consequently being specified as the proposed model. Therefore, the results demonstrate the ability of the HHO algorithm in determining the optimal value of RF hyperparameters than PSO.

Prediction of Various Properties of Soft Ground Soils using Artificial Neural Network (인공신경망을 이용한 연약지반의 지반설계정수 예측)

  • Kim, Young Su;Jeong, Woo Seob;Jeonge, Hwan Chul;Im, An Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2C
    • /
    • pp.81-88
    • /
    • 2006
  • This study performed field and laboratory tests for poor subsoils taken in six regions of the country and determined undrain shear strength. Su values and preconsolidation pressure are predicted using Back Propagation neural network (BPNN) and the application of BPNN is verified. The result of BPNN shows that correlation coefficient between test and neural network result is over 0.9, which means high correlativity. Especially the neural network uses only 6 parameters such as natural water content, void ratio, specific gravity, rate of passing 200th sieve, liquid limits and plasticity index among various affecting factors to estimate value and the correlation coefficent is 0.93. The conclusions obtained in this paper are from the tests performed for poor subsoils taken in the several regions of the country. If there were more test results, the prediction and influence of various soil properties could be effectively performed by neural network.

Evaluation of Ground Properties for Marine Ground in Pusan Area using Elastometer-200 Type (Elastometer-200을 이용한 부산지역 해저지반의 지반특성치 평가)

  • 김동철;최용규
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.83-94
    • /
    • 2000
  • Applicability of PMT in domestic area, test procedure, and methods determining the shear strength parameters $(cu,\phi)$and deformation character (E) using PMT results were studied. At six test boreholes of three construction sites in Pusan, PMT using Elastometer-200 type was performed. The problems occurring during tests were investigated and the test results were analysed.In-situ total horizontal stress could be obtained by observation from pressuremeter curve and limit pressure, p could be determined by $p-log(\Deltav/v)$ method. Shear strength parameters$(cu,\phi)$ and deformation modulus(G, E) could be determined from the PMT results. But effective friction angle and undrained cohesion determined from PMT results were greater than those obtained from laboratory test.Using PMT results, marine soil in Pusan could be classified approximately. Net limite pressure values were in the range of 6.4~22.5 $kg/cm^2$, in clay, 2.2~30.$kg/cm^2$, in sand, 13.0~58.0$kg/cm^2$, in weathered soil and 47.0~190.0 $kg/cm^2$, in weathered rock. Also, Em/p values were in the range of 2.4~7.0 in clay, 2.6~12.1 in sand, 6.8~17.1 in weathered soil and 7.2~29.6 in weathered rock.

  • PDF

An Experimental Study on Time Dependency of Strain for Saturated Clay (포화점토(飽和粘土)의 변형(變形)에 있어서 시간의존성(時間依存性)에 관한 실험적(實驗的) 연구(研究))

  • Park, Byong Kee;Lee, Jin Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.3
    • /
    • pp.43-52
    • /
    • 1984
  • This paper is concerned with the strain characteristics of the time effect on the remoulded saturated day sampled from the downstream of the Yeongsan river, and the constitutive equation that can generally explain time-dependent behaviors of norma1ly consolidated clay. This paper examines whether or not the afore-said constitutive equation can be applied to the remoulded Mooan-clay. Throughout this study, the conclusions obtained are as follows. 1. Throughout the isotropic consolidation test for 7 days and the isotropic relaxation test, the existence of the static and dynamic yielding surfaces is confirmed respectively. 2. The characteristics of time effect of the deformation, namely, the existence of a unique stress-strain-time relation, is conformed from the experimental result on the Mooan-clay. 3. The prodictions of the stress path and the strain on the Cam-clay theory is not consistent with those observed during the experiments. 4. Constitutive equation(2-3-12) obtained by applying Cam-clay theory to Perzyna's elastic-viscoplasticity theory can explain the behavior of pore water pressure during isotropic stress relaxation, concerned with time dependency under undrained condition. The equation can also explain the results of the undrained triaxial compression test for the clay with different strain rate under the same or different consolidation history. 5. This constitutive equation has eight material parameters which can be determined from triaxial compression tests.

  • PDF

Application of Electrokinetic Injection Method for Increasing Shear Strength of Low Permeable Soil (저투수성 지반의 전단강도 증가를 위한 동전기 주입 기법의 적용성)

  • Kim Soo-Sam;Han Sang-Jae;Kim Ki-Nyeon
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.5
    • /
    • pp.5-12
    • /
    • 2006
  • In this study a series of tests (bench scale test) are carried out for increasing the strength of clayey soil by EK-Injection method. In addition, the effects of strength increase in the treated sample are measured by operating the vane shear test device during 25 days at 5 days intervals in order to estimate the effect of ground improvement caused by diffusion. Also, the effects of strength increase in the treated sample are measured by operating the vane shear test device to estimate the effect by treatment durations (5, 10, 15, 20, 25). The test results show that the strength increase was developed approximately 2 to 7 times in comparison to initial shear strength, and outstanding strenfth increase was created as much as 7 times while injecting the sodium silicate and phosphoric acid in anolyte and catholyte. In addition, the measured shear strength with the influence of diffusion and reduction of water-content had a tendency to converge in constant value in proportion to elapsed time. As a result of this study, strength increment developed by the influence of EK-Injection and diffusion rather than the reduction of water-content was 1000% high on average. In case of changes of treatment duration, strength increment developed by the influence of treatment durations rather than the reduction of water-content was 3 to 4 times high on average.

Analysis of Efficiency of Suction Board Drain Method by Step Vacuum Pressure (단계석션압 조건에 따른 석션보드드레인 공법의 효율 분석)

  • Kim, Ki-Nyun;Han, Sang-Jae;Kim, Soo-Sam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6C
    • /
    • pp.321-329
    • /
    • 2008
  • In this study, a series of column test as a way in order to make up for the weakness point of the conventional acceleration method were conducted to both propose the suction board drain method and grapes the specific improvement character of this method as a result of a sort of plastic drain board and a phase of vacuum pressure conditions. On this occasion, the study focused on computing the effective factors of the fittest Suction board drain method affected by each condition through confirming the settlement generated during the test, the water content reduction and stress increase effect occurred arising from the test, and the ratio of consolidation related to the improvement period. In accordance with the shape of core and that whether the core is attached to the filter(pocket or adhesion), the castle type of adhesion and the column type of pocket are more efficient than the others as a consequence of the test to find out the improvement effect depending on each drainage such as a castle type, coil type, harmonica type, column type of pocket and a castle of the adhesion. In case of the step suction pressure, the shorter the period of $-0.8\;kg/cm^2$ as a final step of the suction pressure is, the better the improvement is. In addition, the correlation between degree of consolidation per each suction pressure level and duration of application was drawn as a curve and the point of inflection on this curve was provided to determine the duration period to maximize the consolidation.

The UndrainBd Behavir or of Drilled Shaft Foundations Subjected to Static Inclined Loading (정적 경사하중을 받는 현장타설 말뚝기초의 비배수 거동)

  • ;Kulhawy, Fred H.
    • Geotechnical Engineering
    • /
    • v.11 no.3
    • /
    • pp.91-112
    • /
    • 1995
  • Drilled shafts are used increasingly as the foundations for many types of structures. However, very little knowledge of drilled shaft behavior under inclined load is available. In this study, a systematic experimental testing program was conducted to understand the undrained behavior of drilled shaft foundations under inclined loads. A semi-theoretical method of predicting the inclined capacity was developed through a parametric study of the variables such as shaft geometry and load inclination. Test parameters were chosen to be representative of those most frequently used in the electric utility industry. Short, rigid shafts with varying depth/diameter(D/B) ratios were addressed, and loading modes were investigated that includes exial uplift, inclined uplift, and inclined compression loads. Capacities were evaluated using the structural interaction formula and an equation developed from this experimental study. This new equation models the laboratory data well and is applicable for the limites field data.

  • PDF

Behavioral Characteristics of Decomposed Residual Solis (다짐 풍화잔적토의 거동특성 연구)

  • Lee, In-Mo;Lee, Seung-Cheol;Kim, Yong-Jin
    • Geotechnical Engineering
    • /
    • v.12 no.6
    • /
    • pp.115-126
    • /
    • 1996
  • The purpose of 1,his study is to analyze the compression and strength charactefistics of the decomposed -weathered soil originating from biotite gneiss or fine grained gneiss sampled from Poidong, Seoul : to figure out the behavioural characteristics of the decomposed -weathered soil in accordance with mineral composition and origin by comparing experimental results of residual soils. originating from granites and sampled from Bulam, Andong and Kimchun area. A series of CIU, CID CKoV, CKoD tests were car lied out. Although weathered soils have different origin and mineral composition, the slope of the NCL A was similar. It was also shown that plastic strain ratio was about 85% mainly due to the particle crushing effect during compression. The Poidong soil showed strain softening phenomenon unlike the Kimchun and Andong soils. this implies that the behavioural characteristics are affected by the origin and the mineral composition of the soil particles. Moreover, it was found that the angle of the shear resistance$(\phi')$ was dependent on the mineral composition. On the oher hand, measured Af values of decomposed weathered soils were more than one regardless of the origin and the mineral composition.

  • PDF

The Effects of Principal Stress Rotation in K0-Consolidated Clay (K0-압밀점토(壓密粘土)의 주응력회전(主應力回轉) 효과(効果))

  • Hong, Won Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.159-164
    • /
    • 1988
  • The directions of the principal strain increment, stress, and stress increment during rotation of the principal stress axes at any stress level was studied for $K_0$-consolidated clay using torsion shear apparatus with individual control of the vertical stress, the confining pressure, and the shear stress on hollow cylinder specimens under undrained and drained condition. The torsion shear tests were performed according to predetermined stress-paths, which were chosen to cover over the full range of rotation of principal stress axes. The test results indicated that the strain increment vectors at failure coincided with the stress vectors. That is, the direction of strain increment coincided with the direction of stress increment at small stress levels and with the direction of stress at higher stress levels, which indicated that the behavior of clay was transfered from elastic to plastic as the stress level was increased. The applicability of the elastoplastic theory for modeling of the behavior of clay during rotation of the principal stress axes was given.

  • PDF