• Title/Summary/Keyword: Undrained behavior

Search Result 144, Processing Time 0.02 seconds

Undrained Behavior of Model Drilled Shafts to Inclined Repeated Loadings (경사반복하중을 받는 모형현장타설말뚝의 비배수 거동)

  • 조남준;박정순;이장덕
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.3
    • /
    • pp.77-82
    • /
    • 2001
  • 반복하중을 받는 현장타설말뚝에 대한 두 가지의 주요 관심사항은: (a) 지지력의 변화 가능성 그리고 (b) 누적변형량에 의한 기초의 가능성 저하이다. 이러한 인자들에 대한 평가를 위하여, 모형점토지반에 설치된 24개의 모형현장타설말뚝에 대한 정적 및 동적경사재하시험(12개의 압축 및 12개의 인발)을 수행하였다. 경사반복압축재하시험에서는 반복하중에 의한 지지력의 변화가 무시할 정도였으며, 누적변형량은 송전철탑의 기능성에 영향을 줄수도 있을 것으로 사료된다. 그러나, 경사반복인발시험에서는 과도한 누적변형이 발생하게 되어 결과적으로 현장타설말뚝주변과 점토사이의 접촉면적이 감소하는 것으로 나타났다. 접촉면적의 감소 결과, 반복경사인발하중에 의해서 경사인발지지력의 현저한 감소가 일어난다는 사실을 알 수 있었다. 정적경사인발지지력의 50에서 70퍼센트에 해당되는 반복하중을 받는 대부분의 현장타설말뚝들은 인발되었다.

  • PDF

Change of Geotechnical Properties of Sand due to Cementation (고결(Cementation)에 의한 모래의 지반공학적 특성 변화)

  • Lee, Moon-Joo;Kim, Seung-Han;Choi, Sung-Kun;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.153-160
    • /
    • 2006
  • In this study, the change of getechnical properties of sand due to cementation was investigated by undrained triaxial test of isotropicallv consolidated sample. For inducing the cementation, $5\sim20%$(sand weight) gypsum were included in the sand and cured in the mold under the overburden pressure 55kPa. The yielding strength and stiffness of cemented sand were increased and also the aspects of effective pore water pressure were changed as the degree of cementation and the relative density. Generally the degree of cementation exerted more influence on the behavior of cemented sand than the relative density.

  • PDF

The Behavior of Undrained Pore Water Pressure in Normally Consolidated and Saturated Clay(I) - Analysis by Isotropic Loading Test - (포화된 정규압밀 점성토에서 비배수 공극수압의 거동(I) - 등방재하시험에 의한 분석 -)

  • 임성훈;이달원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.4
    • /
    • pp.126-136
    • /
    • 2003
  • The B value on the saturated soil is commonly known as the amount of 1. Usually this concept is consistent with the condition that effective stress is equal to zero, but it was reported in some literatures that the B value was less than 1 in spite of saturated condition in the test of very stiff material such as rock and quasi-stiff material on which the stiffness can be mobilized because of effective stress not equal to zero. In this study the B value was measured on various effective stress conditions on normally consolidated clay. The test results in the B value less than 1 in spite of perfect saturation. The measured excessive pore water pressure was not only smaller than the change of the total stress, but also the function of time on clay.

Post-liquefaction Behavior under Monotonic Loading of a Silty Sand (실트질 모래의 액상화 후의 정적거동)

  • 강병희;박근보;강대성
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.5
    • /
    • pp.27-36
    • /
    • 2000
  • 보통으로 다져진(Dr=50%)실트질 모래의 액상화 후의 비배수정적거동과 이에 대한 압밀응력비의 영향에 관해서 연구하기 위하여 4가지 압밀응력비(σhc'/σVC'=1.0,0.7,0.55,K0)로서 압밀시킨 공시체를 액상화 전후상태에서 비배수 삼축시험을 수행하였다. 연구결과 액상화를 경험하지 않은 실트질 모래의 p'-q좌표상의 상전이선과 파괴선은 모두 구속압밀응력과 압밀응력비의 크기에 관계없이 각각 원점을 지나는 하나의 직선으로 나타난다. 또한 상정이전단저항은 구속응력이 클수록 증가하난 동일한 구속응력하에서는 압밀응력비와는 관계없이 거의 동일한 값을 갖는 경향을 나타낸다.

  • PDF

Damage in Constitutive Modeling for Soils (지반재료 구성모델에 있어서의 데미지)

  • Kim Dae-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.5
    • /
    • pp.471-479
    • /
    • 2004
  • In this study, a time-dependent constitutive model was developed for cohesive soils. A damage law was included in the model, using which the undrained creep behavior was predicted. The mathematical and physical derivation of the model was performed in the sense of adopting only few model parameters. The model prediction was well agreed with the experimental result of creep testing including creep rupture.

  • PDF

Liquefaction Resistance of Gravel-Sand Mixtures (자갈-모래 혼합토의 액상화 거동)

  • Kim, Bang-Sig;Kang, Byung-Hee;Yoon, Yeo-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.10
    • /
    • pp.47-56
    • /
    • 2007
  • In this research, the effects of the gravel content on the liquefaction behavior for both of the isotropically and $K_0-anisotropically$ consolidated gravel-sand mixtures are investigated. for this purpose, the cyclic triaxial tests for the specimens with the same relative density (Dr=40%) and variations of gravel content were performed. On the other hand, a series of undrained cyclic triaxial tests were carried out on the isotropically consolidated gravel-sand mixtures with the same void ratio (e=0.7) and from 0% to 30% gravel contents. Void ratios of gravel-sand mixtures with the same relative density (Dr=40%) are found to decrease significantly with the increase of the gravel content from 0% to about 70% and increase thereafter. But the void ratio of the sand matrix among the gravel skeleton increases with the increase of the gravel contents. Test results are as follows : for the isotropically consolidated specimen with 40% of relative density and low gavel contents (GC=0%, 20%, 40%), pore water pressure development and axial strain behavior during undrained cyclic loading show similar behavior to those of the loose sand because of high void ratio, and the specimens with high gravel content (70%) both pore pressure and strata behaviors are similar to those of dense sand. And the isotropically consolidated specimens with the same void ratio (e=0.7) and higher gravel contents show the same behavior of pore water pressure and axial strain as that of the loose sand, but for the lower gravel content this behavior shows similar behavior to that of dense sand. The liquefaction strength of the isotropically consolidated specimens with the same relative density increases with gravel content up to 70%, and the strength decreases with the increase of the gravel content at the same void ratio. Thus, it is confirmed that the liquefaction strength of the gravel-sand mixtures depends both on relative density and void ratio of the whole mixture rather than the relative density of the sand matrix filled among gravels. On the other hand, the behavior of pore water pressure and axial strain for the $K_0-anisotropically$ consolidated gravel-sand mixtures shows almost the same cyclic behavior of the sand with no stress reversal even with some stress reversal of the cyclic loading. Namely, even the stress reversal of about 10% of cyclic stress amplitude, the permanent strain with small cyclic strain increases rapidly with the number of cycles, and the initial liquefaction does not occur always with less than maximum pore water pressure ratio of 1.0. The liquefaction resistance increases with the gravel contents between 0% and 40%, but tends to decrease beyond 40% of gravel content. In conclusion, the cyclic behavior of gravel-sand mixtures depends on factors such as gravel content, void ratio, relative density and consolidation condition.

A Study on the Behavior of Piled Abutment Subjected to Lateral Soil Movement of Soft Ground Improved by Deep Cement Mixing Method (DCM 공법으로 개량된 연약지반의 측방유동을 받는 교대 말뚝기초의 거동 분석에 관한 연구)

  • Choi, Yeonho;Kang, Gyeongho
    • The Journal of Engineering Geology
    • /
    • v.30 no.2
    • /
    • pp.131-145
    • /
    • 2020
  • The construction on these flimsy ground, activation of unsymmetrical surcharges, can often cause of the embankment road lateral flow or the destruction of the activities. In this study, the stability of the abutment pile foundation installed on soft ground and its behavior has been evaluated. The behavior of the abutment pile foundation under lateral flow was studied by verifying the behavior and reinforcement effects of the abutment pile foundation of previous studies about horizontal loads acting on the pile due to the lateral flow of the ground by performing finite element analysis. As a result of the consolidation analyses, the undrained cohesion or the strength of the soft ground, was increased by about 1.1 to 1.8 times by the increase in the strength of the soft ground according to the degree of consolidation. It is deemed reasonable to use 3.8 cm of the allowable displacement both economically and constructively, but considering the importance of the structure and the uncertainty of the ground, measurement shall be carried out during construction and thorough safety management of the lateral flow should be done.

Characteristics of Shear Behavior of Remolded Nak-dong River Sandy Silt (재성형된 낙동강 모래질 실트의 전단거동 특성)

  • Kim Young-Su;Tint Khin Swe;Kim Dae-Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.41-50
    • /
    • 2007
  • The results from normally consolidated isotropic drained and undrained triaxial compression tests (NCIU and NCID) on sand with high silt content were presented in this paper. The experiments were performed on specimens of Nak-dong River sand with 63% silt content under effective confined pressures, 100 kPa to 400 kPa. From test results, Sandy silt became initially compressive but eventually appeared to provide dilatancy response throughout the entire stress-strain curve The behavior of sandy silt was more difficult to characterize than that of clay and sand due to lower plastic characteristic. Especially, the samples exhibited dilatancy development during shear after failure. The shear behavior and shear strength parameters of sandy silt can be determined as stress-strain behaviors are described by the Mohr-Coulomb failure criterion. The shear behaviors were observed increasing dilatancy volume change tendency with strain-softening tendency after failure. In this paper, the behavior of dilatancy depends on not only sand content but also fine content with low-cohesion during shear in the samples of sandy silt.

Effect of Gravel Size on Shear Behavior of Sand with Dispersed Gravels (모래 지반 내에 포함된 자갈의 크기가 전단거동에 미치는 영향)

  • Park, Sung-Sik;Kim, Young-Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1C
    • /
    • pp.39-51
    • /
    • 2011
  • A large number of small particles may surround large gravels which are non-contact and dispersed within the ground. The strength of such soil may be influenced by the mechanical properties of a few coarse gravels. A specimen or gravel size can impact the shear characteristics of sand with dispersed gravels. In this study, the size of gravel and specimen varies and its effect on shear characteristics of a granular soil was evaluated. Five sizes of gravels with 7, 12, 15, 18, and 22 mm were used repeatedly and inserted in the middle of each compacted layer. A specimen consists of five or ten equal layers depending on gravel size, which is 5 cm or 10 cm in diameter and 10 cm or 20 cm in height. An embedded gravel ratio by weight is 3% and constant for all cases with gravel. After consolidation, a series of undrained triaxial compression tests under three confining pressures was performed on sand with dispersed gravels. The maximum deviator stress of a specimen with 10 cm in diameter was at average 30% higher than that with 5 cm in diameter and increased up to 90% for a specimen with gravel. When a gravel size of 7 and 12 mm used, the maximum deviator stress of a specimen with 10 cm in diameter was higher than that of one without gravel, whereas the maximum deviator stress of a specimen with 5 cm was higher or lower than that without gravel. The gravel size and specimen diameter influenced the undrained behavior of sand. The maximum deviator stress of a specimen with gravel either increased or decreased compared to that without gravel, depending on the ratio of gravel size to specimen diameter, 1/5.

A Basic Study on Torsion Shear Tests in Soils (흙의 비틀림전단시험에 관한 기초적 연구)

  • 홍원표
    • Geotechnical Engineering
    • /
    • v.4 no.1
    • /
    • pp.17-28
    • /
    • 1988
  • Among several types of element tests to predict soil behalf.iota in a laboratory, the torsion shear apparatus, in which the directions of principal stresses could be rotated during shearing, wra explained. In this study, this torsion shear apparatus was improved so as to be used in tests on clay specimens . And some undrained torsion shear tests u.ere performed on remolded specimens of Ko-consolidated clay to investigate the influence of reorientation of the principal stress directions on the stress-strain behavior The soil behavior by the torsion shear apparatus without torque was compared It.ith that by the conventional triaxial compression tests . The stress path, provided by both vertical loads and torque during torsion shear tests, has much effect on the stress-strain behavior, the pore pressure and the effective principal stress ratio . The rotation angle of the principal stress and the b-value were gradually increased with increasing shear strain, but converged to the values at failure.

  • PDF