• Title/Summary/Keyword: Underwater transient signal detection

Search Result 5, Processing Time 0.022 seconds

Underwater Transient Signal Detection Using Higher-order Statistics and Wavelet Analysis (고차통계 기법과 웨이브렛을 이용한 수중 천이신호 탐지)

  • 조환래;오선택;오택환;나정열
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.8
    • /
    • pp.670-679
    • /
    • 2003
  • This paper deals with application of wavelet transform, which is known to be good for time-frequency analysis, in order to detect the underwater transient signals embedded in ambient noise. A new detector of acoustic transient signals is presented. It combines two detection tools: wavelet analysis and higher-order statistics. Using both techniques, the detection of the transient signal is possible in low signal to noise ratio condition. The proposed algorithm uses the wavelet transform of a partition of the signal on frequency domain, and then higher-order statistics tests the Gaussian nature of the segments.

Detection of Underwater Transient Signals Using Noise Suppression Module of EVRC Speech Codec (EVRC 음성부호화기의 잡음억제단을 이용한 수중 천이신호 검출)

  • Kim, Tae-Hwan;Bae, Keun-Sung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.301-305
    • /
    • 2007
  • In this paper, we propose a simple algorithm for detecting underwater transient signals on the fact that the frequency range of underwater transient signals is similar to audio frequency. For this, we use a preprocessing module of EVRC speech codec that is the standard speech codec of the mobile communications. If a signal is entered into EVRC noise suppression module, we can get some parameters such as the update flag, the energy of each channel, the noise suppressed signal, the energy of input signal, the energy of background noise, and the energy of enhanced signal. Therefore the energy of the enhanced signal that is normalized with the energy of the background noise is compared with the pre-defined detection threshold, and then we can detect the transient signal. And the detection threshold is updated using the previous value in the noisy period. The experimental result shows that the proposed algorithm has $0{\sim}4% error rate in the AWGN or the colored noise environment.

Underwater transient signal detection based on CFAR Power-Law using Doubel-Density Discerte Wavelet Transform coefficient (Double-Density 이산 웨이블렛 변환의 계수를 이용한 CFAR Power-Law기반의 수중 천이 신호 탐지)

  • Jung, Seung-Taek;Cha, Dae-Hyun;Lim, Tae-Gyun;Kim, Jong-Hoon;Hwang, Chan-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.175-179
    • /
    • 2007
  • To existing method which uses energy variation and spectrum deviation to detect the underwater transient signal is useful to detect white noise environment, but it is not useful to do colored noise environment. To improve capacity of detecting the underwater transient signal both in white noise environment and colored noise environment, this study takes advantage of Double Density Discrete Wavelet Transform and CFAR Power-Law.

  • PDF

A Calculation Method of Source Level of Underwater Transient Noise by Frequency Band (주파수 대역별 수중 순간소음 음원준위 산출 기법)

  • Choi, Jae-Yong;Oh, Jun-Seok;Lee, Phil-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.528-533
    • /
    • 2010
  • This paper describes a calculation method of source level of a ship transient noise, which is one of the important elements for the ship detection. Aim of transient noise measurements is to evaluate of acoustic energy due to singular occurrence, which is therefore defined as non-periodic and short termed events like an attack periscope, a rudder and a torpedo door. In generally, in the case of randomly spaced impulse, the spectrum becomes a broadband random noise with no distinctive pattern. Therefore, frequency analysis is not particularly revealing for type of signal. In the paper, it is performed in time domain to analyze a transient noise. However, a source level of transient noise is required an investigation for multiple frequency band. So, in order to calculate a source level of transient noise, a design of exponential weighting function, convolution, band pass filtering, peak detection, root mean square, and parameter compensation are applied. The effectiveness of this calculation scheme is studied through computer simulations and a sea test. Furthermore, an application of the method is applied in a real case.

Binary Tree Architecture Design for Support Vector Machine Using Dynamic Time Warping (DTW를 이용한 SVM 기반 이진트리 구조 설계)

  • Kang, Youn Joung;Lee, Jaeil;Bae, Jinho;Lee, Seung Woo;Lee, Chong Hyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.201-208
    • /
    • 2014
  • In this paper, we propose the classifier structure design algorithm using DTW. Proposed algorithm uses DTW result to design the binary tree architecture based on the SVM which classify the multi-class data. Design the binary tree architecture for Support Vector Machine(SVM-BTA) using the threshold criterion calculated by the sum columns in square matrix which components are the reference data from each class. For comparison the performance of the proposed algorithm, compare the results of classifiers which binary tree structure are designed based on database and k-means algorithm. The data used for classification is 333 signals from 18 classes of underwater transient noise. The proposed classifier has been improved classification performance compared with classifier designed by database system, and probability of detection for non-biological transient signal has improved compare with classifiers using k-means algorithm. The proposed SVM-BTA classified 68.77% of biological sound(BO), 92.86% chain(CHAN) the mechanical sound, and 100% of the 6 kinds of the other classes.