• Title/Summary/Keyword: Underwater survey

Search Result 115, Processing Time 0.019 seconds

Excavation of Kim Jeong-gi and Korean Archeology (창산 김정기의 유적조사와 한국고고학)

  • Lee, Ju-heun
    • Korean Journal of Heritage: History & Science
    • /
    • v.50 no.4
    • /
    • pp.4-19
    • /
    • 2017
  • Kim Jeong-gi (pen-name: Changsan, Mar. 31, 1930 - Aug. 26, 2015) made a major breakthrough in the history of cultural property excavation in Korea: In 1959, he began to develop an interest in cultural heritage after starting work as an employee of the National Museum of Korea. For about thirty years until he retired from the National Research Institute of Cultural Heritage in 1987, he devoted his life to the excavation of our country's historical relics and artifacts and compiled countless data about them. He continued striving to identify the unique value and meaning of our cultural heritage in universities and excavation organizations until he passed away in 2015. Changsan spearheaded all of Korea's monumental archeological excavations and research. He is widely known at home and abroad as a scholar of Korean archeology, particularly in the early years of its existence as an academic discipline. As such, he has had a considerable influence on the development of Korean archeology. Although his multiple activities and roles are meaningful in terms of the country's archaeological history, there are limits to his contributions nevertheless. The Deoksugung Palace period (1955-1972), when the National Museum of Korea was situated in Deoksugung Palace, is considered to be a time of great significance for Korean archeology, as relics with diverse characteristics were researched during this period. Changsan actively participated in archeological surveys of prehistoric shell mounds and dwellings, conducted surveys of historical relics, measured many historical sites, and took charge of photographing and drawing such relics. He put to good use all the excavation techniques that he had learned in Japan, while his countrywide archaeological surveys are highly regarded in terms of academic history as well. What particularly sets his perspectives apart in archaeological terms is the fact that he raised the possibility of underwater tombs in ancient times, and also coined the term "Haemi Culture" as part of a theory of local culture aimed at furthering understanding of Bronze Age cultures in Korea. His input was simply breathtaking. In 1969, the National Research Institute of Cultural Heritage (NRICH) was founded and Changsan was appointed as its head. Despite the many difficulties he faced in running the institute with limited financial and human resources, he gave everything he had to research and field studies of the brilliant cultural heritages that Korea has preserved for so long. Changsan succeeded in restoring Bulguksa Temple, and followed this up with the successful excavation of the Cheonmachong Tomb and the Hwangnamdaechong Tomb in Gyeongju. He then explored the Hwangnyongsa Temple site, Bunhwangsa Temple, and the Mireuksa Temple site in order to systematically evaluate the Buddhist culture and structures of the Three Kingdoms Period. We can safely say that the large excavation projects that he organized and carried out at that time not only laid the foundations for Korean archeology but also made significant contributions to studies in related fields. Above all, in terms of the developmental process of Korean archeology, the achievements he generated with his exceptional passion during the period are almost too numerous to mention, but they include his systematization of various excavation methods, cultivation of archaeologists, popularization of archeological excavations, formalization of survey records, and promotion of data disclosure. On the other hand, although this "Excavation King" devoted himself to excavations, kept precise records, and paid keen attention to every detail, he failed to overcome the limitations of his era in the process of defining the nature of cultural remains and interpreting historical sites and structures. Despite his many roles in Korean archeology, the fact that he left behind a controversy over the identity of the occupant of the Hwangnamdaechong Tomb remains a sore spot in his otherwise perfect reputation.

Operation Measures of Sea Fog Observation Network for Inshore Route Marine Traffic Safety (연안항로 해상교통안전을 위한 해무관측망 운영방안에 관한 연구)

  • Joo-Young Lee;Kuk-Jin Kim;Yeong-Tae Son
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.2
    • /
    • pp.188-196
    • /
    • 2023
  • Among marine accidents caused by bad weather, visibility restrictions caused by sea fog occurrence cause accidents such as ship strand and ship bottom damage, and at the same time involve casualties caused by accidents, which continue to occur every year. In addition, low visibility at sea is emerging as a social problem such as causing considerable inconvenience to islanders in using transportation as passenger ships are collectively delayed and controlled even if there are local differences between regions. Moreover, such measures are becoming more problematic as they cannot objectively quantify them due to regional deviations or different criteria for judging observations from person to person. Currently, the VTS of each port controls the operation of the ship if the visibility distance is less than 1km, and in this case, there is a limit to the evaluation of objective data collection to the extent that the visibility of sea fog depends on the visibility meter or visual observation. The government is building a marine weather signal sign and sea fog observation networks for sea fog detection and prediction as part of solving these obstacles to marine traffic safety, but the system for observing locally occurring sea fog is in a very insufficient practical situation. Accordingly, this paper examines domestic and foreign policy trends to solve social problems caused by low visibility at sea and provides basic data on the need for government support to ensure maritime traffic safety due to sea fog by factually investigating and analyzing social problems. Also, this aims to establish a more stable maritime traffic operation system by blocking marine safety risks that may ultimately arise from sea fog in advance.

An Analytical Study on Rational use of Undersea Space (해저공간의 합리적 활용을 위한 분석적 연구)

  • Won-Jo Jung;Nam-Ki Park
    • Journal of Navigation and Port Research
    • /
    • v.47 no.3
    • /
    • pp.147-154
    • /
    • 2023
  • This study aims to determine the necessity, role, utilization, and operation and management plan in relation to the underwater space platform where humans can newly reside. It provides a comprehensive opinion on the need for creating undersea space and operation plans based on opinions of industry-university-affiliated organizations involved in the R&D project of the Ministry of Maritime Affairs and Fisheries for the utilization of undersea space and external experts participating in marine technology development. In this study, a survey was conducted on researchers participating in the construction of a Korean submarine space platform. FGI was conducted on marine technology development experts. Results were then derived. As a result of the analysis, the need for subsea space construction was found to be high. As for the role of subsea space, the most common opinion was to develop technology for utilizing subsea space and to secure marine science research functions. It was found that the creation of subsea space would have a positive impact on the domestic industry, especially the deep-sea development industry and the shipbuilding/offshore structure industry. In terms of utilization, after the end of the seabed space test bed, the response to utilization as a marine observation base and marine ecosystem research had the highest proportion. As for expected inconvenience, discomfort in the psychological environment was the highest. Experts suggest that securing a continuous budget is most important for stable operation in the future and that securing a manpower budget is essential for itemized budgets. In addition, it was judged that it would be appropriate to establish a prior agreement from the time of the prior agreement and prepare a countermeasure before proceeding with the project in order to ensure ownership issues, consignment management issues, and cost issues when using the project after the end of the project.

Monitoring of Bathymetry Changes in the Coastal Area of Dokdo, East Sea (동해 독도 연안 해저지형 변동 모니터링 연구)

  • Chang Hwan Kim;Soon Young Choi;Won Hyuck Kim;Hyun Ok Choi;Chan Hong Park;Yun Bae Kim;Jong Dae Do
    • Economic and Environmental Geology
    • /
    • v.56 no.5
    • /
    • pp.589-601
    • /
    • 2023
  • We compare high-resolution seabed bathymetry data and seafloor backscattering data acquired, using multi-beam, between 2018 and 2021 to understand topographic changes in the coastal area of Dokdo. The study area, conducted within a 500 m × 500 m in the southern coast between the islands where Dongdo Port is located, has been greatly affected by human activities, waves and ocean currents. The depth variations exhibit between 5 - 70 m. Irregular underwater rocks are distributed in areas with a depth of 20 m or less and 30 - 40 m. As a whole, water depth ranges similar in the east-west direction and become flatter and deeper. The bathymetry contour in 2020 tends to move south as a whole compared to 2018 and 2019. The south moving of the contours in the survey area indicates that the water depth is shallower than before. Since the area where the change in the depth occurred is mainly formed of sedimentary layers, the change in the coast of Dokdo were mainly caused by the inflow of sediments, due to the influence of wind and waves caused by these typhoons (Maysak and Haishen) in 2020. In the Talus area, which developed on the shallow coast between Dongdo and Seodo, the bathymetry changed in 2020 due to erosion or sedimentation, compared to the bathymetry in 2019 and 2018. It is inferred that the changes in the seabed environment occur as the coastal area is directly affected by the typhoons. Due to the influence of the typhoons with strong southerly winds, there was a large amount of sediment inflow, and the overall tendency of the changes was to be deposited. The contours in 2021 appears to have shifted mainly northward, compared to 2020, meaning the area has eroded more than 2020. In 2020, sediments were mainly moved northward and deposited on the coast of Dokdo by the successive typhoons. On the contrary, the coast of Dokdo was eroded as these sediments moved south again in 2021. Dokdo has been largely affected by the north wind in winter, so sediments mainly move southward. But it is understood that sediments move northward when affected by strong typhoons. Such continuous coastal change monitoring and analysis results will be used as important data for longterm conservation policies in relation to topographical changes in Dokdo.

Comparison of NDVI in Rice Paddy according to the Resolution of Optical Satellite Images (광학위성영상의 해상도에 따른 논지역의 정규식생지수 비교)

  • Jeong Eun;Sun-Hwa Kim;Jee-Eun Min
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1321-1330
    • /
    • 2023
  • Normalized Difference Vegetation Index (NDVI) is the most widely used remote sensing data in the agricultural field and is currently provided by most optical satellites. In particular, as high-resolution optical satellite images become available, the selection of optimal optical satellite images according to agricultural applications has become a very important issue. In this study, we aim to define the most optimal optical satellite image when monitoring NDVI in rice fields in Korea and derive the resolution-related requirements necessary for this. For this purpose, we compared and analyzed the spatial distribution and time series patterns of the Dangjin rice paddy in Korea from 2019 to 2022 using NDVI images from MOD13, Landsat-8, Sentinel-2A/B, and PlanetScope satellites, which are widely used around the world. Each data is provided with a spatial resolution of 3 m to 250 m and various periods, and the area of the spectral band used to calculate NDVI also has slight differences. As a result of the analysis, Landsat-8 showed the lowest NDVI value and had very low spatial variation. In comparison, the MOD13 NDVI image showed similar spatial distribution and time series patterns as the PlanetScope data but was affected by the area surrounding the rice field due to low spatial resolution. Sentinel-2A/B showed relatively low NDVI values due to the wide near-infrared band area, and this feature was especially noticeable in the early stages of growth. PlanetScope's NDVI provides detailed spatial variation and stable time series patterns, but considering its high purchase price, it is considered to be more useful in small field areas than in spatially uniform rice paddy. Accordingly, for rice field areas, 250 m MOD13 NDVI or 10 m Sentinel-2A/B are considered to be the most efficient, but high-resolution satellite images can be used to estimate detailed physical quantities of individual crops.